-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[libc][math] Refactor expm1 implementation to header-only in src/__support/math folder. #162127
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
bassiounix
wants to merge
2
commits into
users/bassiounix/spr/10-05-_libc_math_refactor_exp2m1f16_implementation_to_header-only_in_src___support_math_folder
Choose a base branch
from
users/bassiounix/spr/10-06-_libc_math_refactor_expm1_implementation_to_header-only_in_src___support_math_folder
base: users/bassiounix/spr/10-05-_libc_math_refactor_exp2m1f16_implementation_to_header-only_in_src___support_math_folder
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This was referenced Oct 6, 2025
Open
Merged
Merged
Merged
Merged
Merged
Merged
Merged
Merged
This was referenced Oct 6, 2025
Merged
Merged
Merged
Merged
Merged
This was referenced Oct 6, 2025
Merged
Merged
Merged
Merged
Merged
Merged
[libc][math] Refactor exp10m1f16 implementation to header-only in src/__support/math folder.
#161119
Merged
@llvm/pr-subscribers-libc Author: Muhammad Bassiouni (bassiounix) ChangesPart of #147386 in preparation for: https://discourse.llvm.org/t/rfc-make-clang-builtin-math-functions-constexpr-with-llvm-libc-to-support-c-23-constexpr-math-functions/86450 Patch is 45.06 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/162127.diff 9 Files Affected:
diff --git a/libc/shared/math.h b/libc/shared/math.h
index bcddb39021a9c..a5c9de4fb7029 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -54,6 +54,7 @@
#include "math/exp2m1f16.h"
#include "math/expf.h"
#include "math/expf16.h"
+#include "math/expm1.h"
#include "math/frexpf.h"
#include "math/frexpf128.h"
#include "math/frexpf16.h"
diff --git a/libc/shared/math/expm1.h b/libc/shared/math/expm1.h
new file mode 100644
index 0000000000000..4c8dbdc013a11
--- /dev/null
+++ b/libc/shared/math/expm1.h
@@ -0,0 +1,23 @@
+//===-- Shared expm1 function -----------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SHARED_MATH_EXPM1_H
+#define LLVM_LIBC_SHARED_MATH_EXPM1_H
+
+#include "shared/libc_common.h"
+#include "src/__support/math/expm1.h"
+
+namespace LIBC_NAMESPACE_DECL {
+namespace shared {
+
+using math::expm1;
+
+} // namespace shared
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SHARED_MATH_EXPM1_H
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index aaace44d04d3b..74f17b9fd8099 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -886,6 +886,26 @@ add_header_library(
libc.src.__support.macros.properties.cpu_features
)
+add_header_library(
+ expm1
+ HDRS
+ expm1.h
+ DEPENDS
+ .common_constants
+ .exp_constants
+ libc.src.__support.CPP.bit
+ libc.src.__support.FPUtil.dyadic_float
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.multiply_add
+ libc.src.__support.FPUtil.polyeval
+ libc.src.__support.FPUtil.rounding_mode
+ libc.src.__support.FPUtil.triple_double
+ libc.src.__support.integer_literals
+ libc.src.__support.macros.optimization
+ libc.src.errno.errno
+)
+
add_header_library(
range_reduction_double
HDRS
diff --git a/libc/src/__support/math/expm1.h b/libc/src/__support/math/expm1.h
new file mode 100644
index 0000000000000..2d8b3eacae4f6
--- /dev/null
+++ b/libc/src/__support/math/expm1.h
@@ -0,0 +1,518 @@
+//===-- Implementation header for expm1 -------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_EXPM1_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_EXPM1_H
+
+#include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
+#include "exp_constants.h"
+#include "src/__support/CPP/bit.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/dyadic_float.h"
+#include "src/__support/FPUtil/except_value_utils.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/FPUtil/rounding_mode.h"
+#include "src/__support/FPUtil/triple_double.h"
+#include "src/__support/common.h"
+#include "src/__support/integer_literals.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+namespace expm1_internal {
+
+#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
+#define LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS
+#endif
+
+using fputil::DoubleDouble;
+using fputil::TripleDouble;
+using Float128 = typename fputil::DyadicFloat<128>;
+
+using LIBC_NAMESPACE::operator""_u128;
+
+// log2(e)
+static constexpr double LOG2_E = 0x1.71547652b82fep+0;
+
+// Error bounds:
+// Errors when using double precision.
+// 0x1.8p-63;
+static constexpr uint64_t ERR_D = 0x3c08000000000000;
+// Errors when using double-double precision.
+// 0x1.0p-99
+[[maybe_unused]] static constexpr uint64_t ERR_DD = 0x39c0000000000000;
+
+// -2^-12 * log(2)
+// > a = -2^-12 * log(2);
+// > b = round(a, 30, RN);
+// > c = round(a - b, 30, RN);
+// > d = round(a - b - c, D, RN);
+// Errors < 1.5 * 2^-133
+static constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13;
+static constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47;
+static constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47;
+static constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79;
+
+using namespace common_constants_internal;
+
+// Polynomial approximations with double precision:
+// Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
+// For |dx| < 2^-13 + 2^-30:
+// | output - expm1(dx) / dx | < 2^-51.
+LIBC_INLINE static constexpr double poly_approx_d(double dx) {
+ // dx^2
+ double dx2 = dx * dx;
+ // c0 = 1 + dx / 2
+ double c0 = fputil::multiply_add(dx, 0.5, 1.0);
+ // c1 = 1/6 + dx / 24
+ double c1 =
+ fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3);
+ // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
+ double p = fputil::multiply_add(dx2, c1, c0);
+ return p;
+}
+
+// Polynomial approximation with double-double precision:
+// Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
+// For |dx| < 2^-13 + 2^-30:
+// | output - expm1(dx) | < 2^-101
+LIBC_INLINE static constexpr DoubleDouble
+poly_approx_dd(const DoubleDouble &dx) {
+ // Taylor polynomial.
+ constexpr DoubleDouble COEFFS[] = {
+ {0, 0x1p0}, // 1
+ {0, 0x1p-1}, // 1/2
+ {0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6
+ {0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24
+ {0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120
+ {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720
+ {0x1.a01a01a01a01ap-73, 0x1.a01a01a01a01ap-13}, // 1/5040
+ };
+
+ DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
+ COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
+ return p;
+}
+
+// Polynomial approximation with 128-bit precision:
+// Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
+// For |dx| < 2^-13 + 2^-30:
+// | output - exp(dx) | < 2^-126.
+[[maybe_unused]] LIBC_INLINE static constexpr Float128
+poly_approx_f128(const Float128 &dx) {
+ constexpr Float128 COEFFS_128[]{
+ {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
+ {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5
+ {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6
+ {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24
+ {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120
+ {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720
+ {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040
+ };
+
+ Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
+ COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
+ COEFFS_128[6]);
+ return p;
+}
+
+#ifdef DEBUGDEBUG
+std::ostream &operator<<(std::ostream &OS, const Float128 &r) {
+ OS << (r.sign == Sign::NEG ? "-(" : "(") << r.mantissa.val[0] << " + "
+ << r.mantissa.val[1] << " * 2^64) * 2^" << r.exponent << "\n";
+ return OS;
+}
+
+std::ostream &operator<<(std::ostream &OS, const DoubleDouble &r) {
+ OS << std::hexfloat << "(" << r.hi << " + " << r.lo << ")"
+ << std::defaultfloat << "\n";
+ return OS;
+}
+#endif
+
+// Compute exp(x) - 1 using 128-bit precision.
+// TODO(lntue): investigate triple-double precision implementation for this
+// step.
+[[maybe_unused]] LIBC_INLINE static constexpr Float128
+expm1_f128(double x, double kd, int idx1, int idx2) {
+ // Recalculate dx:
+
+ double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
+ double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact
+ double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133
+
+ Float128 dx = fputil::quick_add(
+ Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
+
+ // TODO: Skip recalculating exp_mid1 and exp_mid2.
+ Float128 exp_mid1 =
+ fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
+ fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
+ Float128(EXP2_MID1[idx1].lo)));
+
+ Float128 exp_mid2 =
+ fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
+ fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
+ Float128(EXP2_MID2[idx2].lo)));
+
+ Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
+
+ int hi = static_cast<int>(kd) >> 12;
+ Float128 minus_one{Sign::NEG, -127 - hi,
+ 0x80000000'00000000'00000000'00000000_u128};
+
+ Float128 exp_mid_m1 = fputil::quick_add(exp_mid, minus_one);
+
+ Float128 p = poly_approx_f128(dx);
+
+ // r = exp_mid * (1 + dx * P) - 1
+ // = (exp_mid - 1) + (dx * exp_mid) * P
+ Float128 r =
+ fputil::multiply_add(fputil::quick_mul(exp_mid, dx), p, exp_mid_m1);
+
+ r.exponent += hi;
+
+#ifdef DEBUGDEBUG
+ std::cout << "=== VERY SLOW PASS ===\n"
+ << " kd: " << kd << "\n"
+ << " hi: " << hi << "\n"
+ << " minus_one: " << minus_one << " dx: " << dx
+ << "exp_mid_m1: " << exp_mid_m1 << " exp_mid: " << exp_mid
+ << " p: " << p << " r: " << r << std::endl;
+#endif
+
+ return r;
+}
+
+// Compute exp(x) - 1 with double-double precision.
+LIBC_INLINE static constexpr DoubleDouble
+exp_double_double(double x, double kd, const DoubleDouble &exp_mid,
+ const DoubleDouble &hi_part) {
+ // Recalculate dx:
+ // dx = x - k * 2^-12 * log(2)
+ double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
+ double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact
+ double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130
+
+ DoubleDouble dx = fputil::exact_add(t1, t2);
+ dx.lo += t3;
+
+ // Degree-6 Taylor polynomial approximation in double-double precision.
+ // | p - exp(x) | < 2^-100.
+ DoubleDouble p = poly_approx_dd(dx);
+
+ // Error bounds: 2^-99.
+ DoubleDouble r =
+ fputil::multiply_add(fputil::quick_mult(exp_mid, dx), p, hi_part);
+
+#ifdef DEBUGDEBUG
+ std::cout << "=== SLOW PASS ===\n"
+ << " dx: " << dx << " p: " << p << " r: " << r << std::endl;
+#endif
+
+ return r;
+}
+
+// Check for exceptional cases when
+// |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9
+LIBC_INLINE static constexpr double set_exceptional(double x) {
+ using FPBits = typename fputil::FPBits<double>;
+ FPBits xbits(x);
+
+ uint64_t x_u = xbits.uintval();
+ uint64_t x_abs = xbits.abs().uintval();
+
+ // |x| <= 2^-53.
+ if (x_abs <= 0x3ca0'0000'0000'0000ULL) {
+ // expm1(x) ~ x.
+
+ if (LIBC_UNLIKELY(x_abs <= 0x0370'0000'0000'0000ULL)) {
+ if (LIBC_UNLIKELY(x_abs == 0))
+ return x;
+ // |x| <= 2^-968, need to scale up a bit before rounding, then scale it
+ // back down.
+ return 0x1.0p-200 * fputil::multiply_add(x, 0x1.0p+200, 0x1.0p-1022);
+ }
+
+ // 2^-968 < |x| <= 2^-53.
+ return fputil::round_result_slightly_up(x);
+ }
+
+ // x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
+
+ // x < log(2^-54) or -inf/nan
+ if (x_u >= 0xc042'b708'8723'20e2ULL) {
+ // expm1(-Inf) = -1
+ if (xbits.is_inf())
+ return -1.0;
+
+ // exp(nan) = nan
+ if (xbits.is_nan())
+ return x;
+
+ return fputil::round_result_slightly_up(-1.0);
+ }
+
+ // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
+ // x is finite
+ if (x_u < 0x7ff0'0000'0000'0000ULL) {
+ int rounding = fputil::quick_get_round();
+ if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
+ return FPBits::max_normal().get_val();
+
+ fputil::set_errno_if_required(ERANGE);
+ fputil::raise_except_if_required(FE_OVERFLOW);
+ }
+ // x is +inf or nan
+ return x + FPBits::inf().get_val();
+}
+
+} // namespace expm1_internal
+
+LIBC_INLINE static constexpr double expm1(double x) {
+ using namespace expm1_internal;
+
+ using FPBits = typename fputil::FPBits<double>;
+
+ FPBits xbits(x);
+
+ bool x_is_neg = xbits.is_neg();
+ uint64_t x_u = xbits.uintval();
+
+ // Upper bound: max normal number = 2^1023 * (2 - 2^-52)
+ // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
+ // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
+ // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
+ // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
+
+ // Lower bound: log(2^-54) = -0x1.2b708872320e2p5
+ // > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5
+
+ // x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53.
+
+ if (LIBC_UNLIKELY(x_u >= 0xc042b708872320e2 ||
+ (x_u <= 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) ||
+ x_u <= 0x3ca0000000000000)) {
+ return set_exceptional(x);
+ }
+
+ // Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
+
+ // Range reduction:
+ // Let x = log(2) * (hi + mid1 + mid2) + lo
+ // in which:
+ // hi is an integer
+ // mid1 * 2^6 is an integer
+ // mid2 * 2^12 is an integer
+ // then:
+ // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
+ // With this formula:
+ // - multiplying by 2^hi is exact and cheap, simply by adding the exponent
+ // field.
+ // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
+ // - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
+ //
+ // They can be defined by:
+ // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
+ // If we store L2E = round(log2(e), D, RN), then:
+ // log2(e) - L2E ~ 1.5 * 2^(-56)
+ // So the errors when computing in double precision is:
+ // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
+ // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
+ // + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
+ // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN
+ // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
+ // So if:
+ // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
+ // in double precision, the reduced argument:
+ // lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
+ // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
+ // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
+ // < 2^-13 + 2^-41
+ //
+
+ // The following trick computes the round(x * L2E) more efficiently
+ // than using the rounding instructions, with the tradeoff for less accuracy,
+ // and hence a slightly larger range for the reduced argument `lo`.
+ //
+ // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
+ // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
+ // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
+ // Thus, the goal is to be able to use an additional addition and fixed width
+ // shift to get an int32_t representing round(x * 2^12 * L2E).
+ //
+ // Assuming int32_t using 2-complement representation, since the mantissa part
+ // of a double precision is unsigned with the leading bit hidden, if we add an
+ // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
+ // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
+ // considered as a proper 2-complement representations of x*2^12*L2E.
+ //
+ // One small problem with this approach is that the sum (x*2^12*L2E + C) in
+ // double precision is rounded to the least significant bit of the dorminant
+ // factor C. In order to minimize the rounding errors from this addition, we
+ // want to minimize e1. Another constraint that we want is that after
+ // shifting the mantissa so that the least significant bit of int32_t
+ // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
+ // any adjustment. So combining these 2 requirements, we can choose
+ // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
+ // after right shifting the mantissa, the resulting int32_t has correct sign.
+ // With this choice of C, the number of mantissa bits we need to shift to the
+ // right is: 52 - 33 = 19.
+ //
+ // Moreover, since the integer right shifts are equivalent to rounding down,
+ // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
+ // +infinity. So in particular, we can compute:
+ // hmm = x * 2^12 * L2E + C,
+ // where C = 2^33 + 2^32 + 2^-1, then if
+ // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
+ // the reduced argument:
+ // lo = x - log(2) * 2^-12 * k is bounded by:
+ // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
+ // = 2^-13 + 2^-31 + 2^-41.
+ //
+ // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
+ // exponent 2^12 is not needed. So we can simply define
+ // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
+ // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
+
+ // Rounding errors <= 2^-31 + 2^-41.
+ double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21);
+ int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
+ double kd = static_cast<double>(k);
+
+ uint32_t idx1 = (k >> 6) & 0x3f;
+ uint32_t idx2 = k & 0x3f;
+ int hi = k >> 12;
+
+ DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
+ DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
+
+ DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
+
+ // -2^(-hi)
+ double one_scaled =
+ FPBits::create_value(Sign::NEG, FPBits::EXP_BIAS - hi, 0).get_val();
+
+ // 2^(mid1 + mid2) - 2^(-hi)
+ DoubleDouble hi_part = x_is_neg ? fputil::exact_add(one_scaled, exp_mid.hi)
+ : fputil::exact_add(exp_mid.hi, one_scaled);
+
+ hi_part.lo += exp_mid.lo;
+
+ // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
+ // = 2^11 * 2^-13 * 2^-52
+ // = 2^-54.
+ // |dx| < 2^-13 + 2^-30.
+ double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
+ double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h);
+
+ // We use the degree-4 Taylor polynomial to approximate exp(lo):
+ // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
+ // So that the errors are bounded by:
+ // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
+ // Let P_ be an evaluation of P where all intermediate computations are in
+ // double precision. Using either Horner's or Estrin's schemes, the evaluated
+ // errors can be bounded by:
+ // |P_(dx) - P(dx)| < 2^-51
+ // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
+ // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
+ // Since we approximate
+ // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
+ // We use the expression:
+ // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
+ // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
+ // with errors bounded by 1.5 * 2^-63.
+
+ // Finally, we have the following approximation formula:
+ // expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1
+ // = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) )
+ // ~ 2^hi * ( (exp_mid.hi - 2^-hi) +
+ // + (exp_mid.hi * dx * P_(dx) + exp_mid.lo))
+
+ double mid_lo = dx * exp_mid.hi;
+
+ // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
+ double p = poly_approx_d(dx);
+
+ double lo = fputil::multiply_add(p, mid_lo, hi_part.lo);
+
+ // TODO: The following line leaks encoding abstraction. Use FPBits methods
+ // instead.
+ uint64_t err = x_is_neg ? (static_cast<uint64_t>(-hi) << 52) : 0;
+
+ double err_d = cpp::bit_cast<double>(ERR_D + err);
+
+ double upper = hi_part.hi + (lo + err_d);
+ double lower = hi_part.hi + (lo - e...
[truncated]
|
dde8fc1
to
505022a
Compare
b0a94c5
to
079611c
Compare
505022a
to
7a078fa
Compare
68bb3fe
to
b0a8e59
Compare
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Part of #147386
in preparation for: https://discourse.llvm.org/t/rfc-make-clang-builtin-math-functions-constexpr-with-llvm-libc-to-support-c-23-constexpr-math-functions/86450