-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[mlir][xegpu] Add more tests in XeGPU subgroup distribution. #162543
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
charithaintc
wants to merge
5
commits into
llvm:main
Choose a base branch
from
charithaintc:test_pass_for_move_to_warpop
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+187
−5
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-gpu Author: Charitha Saumya (charithaintc) ChangesThis PR adds some tests for covering some useful corner cases.
Full diff: https://github.com/llvm/llvm-project/pull/162543.diff 5 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/Transforms/Transforms.h b/mlir/include/mlir/Dialect/XeGPU/Transforms/Transforms.h
index b74c15e5b7ac1..a480195eebd00 100644
--- a/mlir/include/mlir/Dialect/XeGPU/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/XeGPU/Transforms/Transforms.h
@@ -64,6 +64,10 @@ void populateXeGPUFoldAliasOpsPatterns(RewritePatternSet &patterns);
/// Appends patterns for XeGPU SIMT distribution into `patterns`.
void populateXeGPUSubgroupDistributePatterns(RewritePatternSet &patterns);
+/// Appends patterns for moving function body into gpu.warp_execute_on_lane0 op.
+void populateXeGPUMoveFuncBodyToWarpOpPatterns(RewritePatternSet &patterns);
+/// Appends patterns for XeGPU workgroup to subgroup distribution into
+/// `patterns`.
void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns);
/// Collect a set of patterns to unroll xegpu operations to a smaller shapes.
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
index f1dbc5ddb2022..26770b3c003ea 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
@@ -195,8 +195,7 @@ static bool requireTranspose(const xegpu::LayoutAttr layout,
/// }
/// return %0
/// }
-struct MoveFuncBodyToWarpExecuteOnLane0
- : public OpRewritePattern<gpu::GPUFuncOp> {
+struct MoveFuncBodyToWarpOp : public OpRewritePattern<gpu::GPUFuncOp> {
using OpRewritePattern<gpu::GPUFuncOp>::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::GPUFuncOp gpuFuncOp,
PatternRewriter &rewriter) const override {
@@ -1447,6 +1446,11 @@ void xegpu::populateXeGPUSubgroupDistributePatterns(
/*pattern benefit=*/highPatternBenefit);
}
+void xegpu::populateXeGPUMoveFuncBodyToWarpOpPatterns(
+ RewritePatternSet &patterns) {
+ patterns.add<MoveFuncBodyToWarpOp>(patterns.getContext());
+}
+
void XeGPUSubgroupDistributePass::runOnOperation() {
// Step 1: Attach layouts to op operands.
// TODO: Following assumptions are made:
@@ -1473,7 +1477,7 @@ void XeGPUSubgroupDistributePass::runOnOperation() {
// gpu.warp_execute_on_lane_0 operation.
{
RewritePatternSet patterns(&getContext());
- patterns.add<MoveFuncBodyToWarpExecuteOnLane0>(&getContext());
+ xegpu::populateXeGPUMoveFuncBodyToWarpOpPatterns(patterns);
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) {
signalPassFailure();
diff --git a/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir b/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir
new file mode 100644
index 0000000000000..d289d73e863c7
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir
@@ -0,0 +1,63 @@
+// RUN: mlir-opt -test-xegpu-move-func-to-warp-op -split-input-file --allow-unregistered-dialect %s | FileCheck %s
+
+gpu.module @test {
+gpu.func @empty() {
+ gpu.return
+}
+}
+
+// CHECK-LABEL: gpu.func @empty() {
+// CHECK-NEXT: gpu.return
+// CHECK-NEXT: }
+
+// -----
+gpu.module @test {
+gpu.func @gemm(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<8x16xf32>) {
+ %c0 = arith.constant 0 : index
+ %0 = xegpu.create_nd_tdesc %arg0 : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16>
+ %1 = xegpu.create_nd_tdesc %arg1 : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16>
+ %2 = xegpu.load_nd %0[%c0, %c0] : !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16>
+ %3 = xegpu.load_nd %1[%c0, %c0] : !xegpu.tensor_desc<16x16xf16> -> vector<16x16xf16>
+ %4 = xegpu.dpas %2, %3 : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32>
+ %5 = xegpu.create_nd_tdesc %arg2 : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32>
+ xegpu.store_nd %4, %5[%c0, %c0] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
+ gpu.return
+}
+}
+
+// CHECK-LABEL: gpu.func @gemm(
+// CHECK: %[[ARG0:[a-zA-Z0-9]+]]: memref<8x16xf16>, %[[ARG1:[a-zA-Z0-9]+]]: memref<16x16xf16>,
+// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: memref<8x16xf32>) {
+// CHECK: %[[LANEID:.*]] = gpu.lane_id
+// CHECK-NEXT: gpu.warp_execute_on_lane_0(%[[LANEID]])[16]
+// CHECK-SAME: args(%[[ARG0]], %[[ARG1]], %[[ARG2]] : memref<8x16xf16>, memref<16x16xf16>, memref<8x16xf32>) {
+// CHECK: ^bb0(%[[ARG3:[a-zA-Z0-9]+]]: memref<8x16xf16>, %[[ARG4:[a-zA-Z0-9]+]]: memref<16x16xf16>,
+// CHECK-SAME: %[[ARG5:[a-zA-Z0-9]+]]: memref<8x16xf32>):
+// CHECK-NEXT: %[[T1:.*]] = xegpu.create_nd_tdesc %[[ARG3]] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16>
+// CHECK-NEXT: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG4]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16>
+// CHECK-NEXT: %[[T3:.*]] = xegpu.load_nd %[[T1]][{{.*}}] : !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16>
+// CHECK-NEXT: %[[T4:.*]] = xegpu.load_nd %[[T2]][{{.*}}] : !xegpu.tensor_desc<16x16xf16> -> vector<16x16xf16>
+// CHECK-NEXT: %[[T5:.*]] = xegpu.dpas %[[T3]], %[[T4]] : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32>
+// CHECK-NEXT: %[[T6:.*]] = xegpu.create_nd_tdesc %[[ARG5]] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32>
+// CHECK-NEXT: xegpu.store_nd %[[T5]], %[[T6]][%{{.*}}] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
+// CHECK-NEXT: }
+// CHECK-NEXT: gpu.return
+
+// -----
+gpu.module @test {
+gpu.func @already_in_warp_op() {
+ %laneid = gpu.lane_id
+ gpu.warp_execute_on_lane_0(%laneid)[16] {
+ "some_op"() : () -> ()
+ gpu.yield
+ }
+ gpu.return
+}
+}
+
+// CHECK-LABEL: gpu.func @already_in_warp_op() {
+// CHECK: %[[LANEID:.*]] = gpu.lane_id
+// CHECK: gpu.warp_execute_on_lane_0(%[[LANEID]])[16] {
+// CHECK: "some_op"() : () -> ()
+// CHECK: }
+// CHECK: gpu.return
diff --git a/mlir/test/Dialect/XeGPU/subgroup-distribute-unit.mlir b/mlir/test/Dialect/XeGPU/subgroup-distribute-unit.mlir
index 40b66d18cc47f..f233dff609f2b 100644
--- a/mlir/test/Dialect/XeGPU/subgroup-distribute-unit.mlir
+++ b/mlir/test/Dialect/XeGPU/subgroup-distribute-unit.mlir
@@ -530,7 +530,7 @@ gpu.module @xevm_module{
// CHECK-NEXT: }
// CHECK-NEXT: %[[T1:.*]] = vector.transpose %[[W]]#1, [1, 0] : vector<1x2xf32> to vector<2x1xf32>
gpu.module @xevm_module{
- gpu.func @vector_transpose(%arg0: memref<2x16xf32>, %laneid: index) {
+ gpu.func @vector_transpose(%laneid: index) {
%r = gpu.warp_execute_on_lane_0(%laneid)[16] -> (vector<2x1xf32>) {
%cst = "some_op"()
{layout_result_0 = #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>}
@@ -556,7 +556,7 @@ gpu.module @xevm_module{
// CHECK: }
// CHECK: vector.bitcast %[[W]]#1 : vector<4x2xi8> to vector<4x1xi16>
gpu.module @xevm_module{
- gpu.func @vector_bitcast(%arg0: memref<4x16xi16>, %laneid: index) {
+ gpu.func @vector_bitcast(%laneid: index) {
%r = gpu.warp_execute_on_lane_0(%laneid)[16] -> (vector<4x1xi16>) {
%cst = "some_op"()
{layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 2]>}
@@ -573,3 +573,82 @@ gpu.module @xevm_module{
gpu.return
}
}
+
+// -----
+// CHECK-LABEL: gpu.func @vector_shapecast_rank_increasing
+// CHECK: %{{.*}}:2 = gpu.warp_execute_on_lane_0(%{{.*}})[16] -> (vector<1x1xf32>, vector<1xf32>) {
+// CHECK: gpu.yield %{{.*}} : vector<1x16xf32>, vector<16xf32>
+// CHECK: }
+// CHECK: %{{.*}} = vector.shape_cast %{{.*}}#1 : vector<1xf32> to vector<1x1xf32>
+gpu.module @xevm_module {
+ gpu.func @vector_shapecast_rank_increasing(%laneid: index) {
+ %r = gpu.warp_execute_on_lane_0(%laneid)[16] -> (vector<1x1xf32>) {
+ %cst = "some_op"()
+ {layout_result_0 = #xegpu.slice<#xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>, dims = [0]>}
+ : () -> (vector<16xf32>)
+ %cast = vector.shape_cast %cst
+ {
+ layout_operand_0 = #xegpu.slice<#xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>, dims = [0]>,
+ layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>
+ }
+ : vector<16xf32> to vector<1x16xf32>
+ gpu.yield %cast : vector<1x16xf32>
+ }
+ "some_user_op"(%r) : (vector<1x1xf32>) -> ()
+ gpu.return
+ }
+}
+
+// -----
+// CHECK-LABEL: gpu.func @vector_shapecast_rank_reducing(
+// CHECK: %{{.*}}:2 = gpu.warp_execute_on_lane_0(%{{.*}})[16] -> (vector<1xf32>, vector<1x1xf32>) {
+// CHECK: gpu.yield %{{.*}} : vector<16xf32>, vector<1x16xf32>
+// CHECK: }
+// CHECK: %{{.*}} = vector.shape_cast %{{.*}}#1 : vector<1x1xf32> to vector<1xf32>
+gpu.module @xevm_module {
+ gpu.func @vector_shapecast_rank_reducing(%laneid: index) {
+ %r = gpu.warp_execute_on_lane_0(%laneid)[16] -> (vector<1xf32>) {
+ %cst = "some_op"()
+ {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}
+ : () -> (vector<1x16xf32>)
+ %cast = vector.shape_cast %cst
+ {
+ layout_operand_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>,
+ layout_result_0 = #xegpu.slice<#xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>, dims = [0]>
+ }
+ : vector<1x16xf32> to vector<16xf32>
+ gpu.yield %cast : vector<16xf32>
+ }
+ "some_user_op"(%r) : (vector<1xf32>) -> ()
+ gpu.return
+ }
+}
+
+// -----
+// NOTE: Layouts are still valid, but distribution still requires a slice layout for the operand.
+//
+// CHECK-LABEL: gpu.func @vector_shapecast_unsupported
+// CHECK: %[[W:.*]] = gpu.warp_execute_on_lane_0(%{{.*}})[16] -> (vector<1x1xf32>) {
+// CHECK: %[[T1:.*]] = vector.shape_cast %{{.*}} : vector<16xf32> to vector<1x16xf32>
+// CHECK: gpu.yield %[[T1]] : vector<1x16xf32>
+// CHECK: }
+// CHECK: "some_user_op"(%[[W]]) : (vector<1x1xf32>) -> ()
+// CHECK: gpu.return
+gpu.module @xevm_module {
+ gpu.func @vector_shapecast_unsupported(%laneid: index) {
+ %r = gpu.warp_execute_on_lane_0(%laneid)[16] -> (vector<1x1xf32>) {
+ %cst = "some_op"()
+ {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]> }
+ : () -> (vector<16xf32>)
+ %cast = vector.shape_cast %cst
+ {
+ layout_operand_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>,
+ layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>
+ }
+ : vector<16xf32> to vector<1x16xf32>
+ gpu.yield %cast : vector<1x16xf32>
+ }
+ "some_user_op"(%r) : (vector<1x1xf32>) -> ()
+ gpu.return
+ }
+}
diff --git a/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp b/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp
index 6ba7a004b7d31..1869a9af34493 100644
--- a/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp
+++ b/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp
@@ -14,6 +14,7 @@
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
+#include "mlir/Pass/PassRegistry.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
@@ -247,6 +248,36 @@ struct TestXeGPUSGDistribute
}
};
+struct TestXeGPUMoveFuncBodyToWarpOp
+ : public PassWrapper<TestXeGPUMoveFuncBodyToWarpOp,
+ OperationPass<gpu::GPUModuleOp>> {
+ MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestXeGPUMoveFuncBodyToWarpOp)
+
+ StringRef getArgument() const final {
+ return "test-xegpu-move-func-to-warp-op";
+ }
+
+ StringRef getDescription() const final {
+ return "Test the implementation of XeGPU move gpu function body to "
+ "WarpExecuteOnLane0 op.";
+ }
+
+ void getDependentDialects(::mlir::DialectRegistry ®istry) const override {
+ registry.insert<xegpu::XeGPUDialect>();
+ registry.insert<gpu::GPUDialect>();
+ }
+
+ TestXeGPUMoveFuncBodyToWarpOp() = default;
+ TestXeGPUMoveFuncBodyToWarpOp(const TestXeGPUMoveFuncBodyToWarpOp &pass) =
+ default;
+
+ void runOnOperation() override {
+ RewritePatternSet patterns(&getContext());
+ xegpu::populateXeGPUMoveFuncBodyToWarpOpPatterns(patterns);
+ (void)applyPatternsGreedily(getOperation(), std::move(patterns));
+ }
+};
+
struct TestXeGPULayoutInterface
: public PassWrapper<TestXeGPULayoutInterface,
OperationPass<gpu::GPUModuleOp>> {
@@ -312,6 +343,7 @@ void registerTestXeGPULowerings() {
PassRegistration<TestXeGPUUnrollingPatterns>();
PassRegistration<TestXeGPULayoutInterface>();
PassRegistration<TestXeGPUSGDistribute>();
+ PassRegistration<TestXeGPUMoveFuncBodyToWarpOp>();
}
} // namespace test
} // namespace mlir
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR adds some tests for covering some useful corner cases.
vector.shape_cast
distribution.MoveFuncBodyToWarpOp
pattern that was not possible before.