-
Notifications
You must be signed in to change notification settings - Fork 14.6k
[mlir][linalg] Document ops not supported by the vectoriser (nfc) #81500
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][linalg] Document ops not supported by the vectoriser (nfc) #81500
Conversation
Adds a test to help document Linalg Ops that are currently not supported by the vectoriser (i.e. the logic to vectorise these is missing). The list is not exhaustive.
@llvm/pr-subscribers-mlir Author: Andrzej Warzyński (banach-space) ChangesAdds a test to help document Linalg Ops that are currently not supported Full diff: https://github.com/llvm/llvm-project/pull/81500.diff 1 Files Affected:
diff --git a/mlir/test/Dialect/Linalg/vectorization-unsupported.mlir b/mlir/test/Dialect/Linalg/vectorization-unsupported.mlir
new file mode 100644
index 00000000000000..a1a52397386c97
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/vectorization-unsupported.mlir
@@ -0,0 +1,73 @@
+// RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics
+
+func.func @conv1d_nwc_wcf_dyn_ch_dim(%input: memref<4x6x?xf32>, %filter: memref<1x?x8xf32>, %output: memref<4x2x8xf32>) {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ linalg.conv_1d_nwc_wcf
+ {dilations = dense<1> : tensor<1xi64>, strides = dense<3> : tensor<1xi64>}
+ ins(%input, %filter : memref<4x6x?xf32>, memref<1x?x8xf32>)
+ outs(%output : memref<4x2x8xf32>)
+ return
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.conv_1d_nwc_wcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @depthwise_conv1d_nwc_wc_dyn_ch_dim(%input: memref<3x5x?xf32>, %filter: memref<2x?xf32>, %output: memref<3x2x?xf32>) {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
+ ins(%input, %filter : memref<3x5x?xf32>, memref<2x?xf32>)
+ outs(%output : memref<3x2x?xf32>)
+ return
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @depthwise_conv1d_nwc_wc_dyn_w_dim(%input: memref<3x?x3xf32>, %filter: memref<2x3xf32>, %output: memref<3x?x3xf32>) {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
+ ins(%input, %filter : memref<3x?x3xf32>, memref<2x3xf32>)
+ outs(%output : memref<3x?x3xf32>)
+ return
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @conv1d_dyn_w_dim(%input: tensor<?xf32>, %filter: tensor<4xf32>, %output: tensor<?xf32>) -> tensor<?xf32> {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ %0 = linalg.conv_1d ins(%input, %filter : tensor<?xf32>, tensor<4xf32>)
+ outs(%output : tensor<?xf32>) -> tensor<?xf32>
+ return %0 : tensor<?xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.conv_1d"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
|
@llvm/pr-subscribers-mlir-linalg Author: Andrzej Warzyński (banach-space) ChangesAdds a test to help document Linalg Ops that are currently not supported Full diff: https://github.com/llvm/llvm-project/pull/81500.diff 1 Files Affected:
diff --git a/mlir/test/Dialect/Linalg/vectorization-unsupported.mlir b/mlir/test/Dialect/Linalg/vectorization-unsupported.mlir
new file mode 100644
index 00000000000000..a1a52397386c97
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/vectorization-unsupported.mlir
@@ -0,0 +1,73 @@
+// RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics
+
+func.func @conv1d_nwc_wcf_dyn_ch_dim(%input: memref<4x6x?xf32>, %filter: memref<1x?x8xf32>, %output: memref<4x2x8xf32>) {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ linalg.conv_1d_nwc_wcf
+ {dilations = dense<1> : tensor<1xi64>, strides = dense<3> : tensor<1xi64>}
+ ins(%input, %filter : memref<4x6x?xf32>, memref<1x?x8xf32>)
+ outs(%output : memref<4x2x8xf32>)
+ return
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.conv_1d_nwc_wcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @depthwise_conv1d_nwc_wc_dyn_ch_dim(%input: memref<3x5x?xf32>, %filter: memref<2x?xf32>, %output: memref<3x2x?xf32>) {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
+ ins(%input, %filter : memref<3x5x?xf32>, memref<2x?xf32>)
+ outs(%output : memref<3x2x?xf32>)
+ return
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @depthwise_conv1d_nwc_wc_dyn_w_dim(%input: memref<3x?x3xf32>, %filter: memref<2x3xf32>, %output: memref<3x?x3xf32>) {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ linalg.depthwise_conv_1d_nwc_wc
+ {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
+ ins(%input, %filter : memref<3x?x3xf32>, memref<2x3xf32>)
+ outs(%output : memref<3x?x3xf32>)
+ return
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
+func.func @conv1d_dyn_w_dim(%input: tensor<?xf32>, %filter: tensor<4xf32>, %output: tensor<?xf32>) -> tensor<?xf32> {
+ // expected-error @+1 {{Attempted to vectorize, but failed}}
+ %0 = linalg.conv_1d ins(%input, %filter : tensor<?xf32>, tensor<4xf32>)
+ outs(%output : tensor<?xf32>) -> tensor<?xf32>
+ return %0 : tensor<?xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.conv_1d"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM cheers, perhaps just add NFC to the commit message
The CI failure looked like bogus Windows issue. so landed regardless. |
Adds a test to help document Linalg Ops that are currently not supported
by the vectoriser (i.e. the logic to vectorise these is missing). The
list is not exhaustive.