Skip to content

Official implementation for "Multimodal Chain-of-Thought Reasoning in Language Models" (stay tuned and more will be updated)

License

Notifications You must be signed in to change notification settings

lonestar234028/mm-cot

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multimodal Chain-of-Thought Reasoning in Language Models

"Imagine learning a textbook without figures or tables."

Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output.

Requirements

Install all required python dependencies:

pip install -r requirements.txt

Datasets

Download the dataset from the following repository:

https://github.com/lupantech/ScienceQA/tree/main/data

Download the extracted vision features from vision_features and unzip the files under vision_features

Instructions

Training

# rationale generation
CUDA_VISIBLE_DEVICES=0,1 python main.py \
    --model allenai/unifiedqa-t5-base \
    --user_msg rationale --img_type detr \
    --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \
    --final_eval --prompt_format QCM-LE

# answer inference
CUDA_VISIBLE_DEVICES=0,1 python main.py \
    --model allenai/unifiedqa-t5-base \
    --user_msg answer --img_type detr \
    --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \
    --final_eval --prompt_format QCMG-A \
    --eval_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_eval.json \
    --test_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_test.json

Inference

Our trained models are available at models. To use our trained models, please put the them under the models folder.

# rationale generation
CUDA_VISIBLE_DEVICES=0,1 python main.py \
    --model allenai/unifiedqa-t5-base \
    --user_msg rationale --img_type detr \
    --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \
    --final_eval --prompt_format QCM-LE \
    --evaluate_dir models/MM-CoT-UnifiedQA-base-Rationale

# answer inference
CUDA_VISIBLE_DEVICES=0,1 python main.py \
    --model allenai/unifiedqa-t5-base \
    --user_msg answer --img_type detr \
    --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \
    --final_eval --prompt_format QCMG-A \
    --eval_le models/rationale/predictions_ans_eval.json \
    --test_le models/rationale/predictions_ans_test.json \
    --evaluate_dir models/MM-CoT-UnifiedQA-base-Answer

Citing MM-CoT

@article{zhang2023multicot,
  title={Multimodal Chain-of-Thought Reasoning in Language Models},
  author={Zhang, Zhuosheng and Zhang, Aston and Li, Mu and Zhao, Hai and Karypis, George and Smola, Alex},
  journal={arXiv preprint arXiv:2302.00923},
  year={2023}
}

License

This project is licensed under the Apache-2.0 License.

Acknowledgement

Part of our codes are adapted from ScienceQA and Transformers.

We thank Pan Lu for providing parameter size for ScienceQA baselines.

About

Official implementation for "Multimodal Chain-of-Thought Reasoning in Language Models" (stay tuned and more will be updated)

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.2%
  • Shell 4.8%