Skip to content

Wrap Gemini CLI as an OpenAI/Gemini/Claude compatible API service, allowing you to enjoy the free Gemini 2.5 Pro model through API

License

Notifications You must be signed in to change notification settings

luispater/CLIProxyAPI

Repository files navigation

CLI Proxy API

English | 中文

A proxy server that provides an OpenAI/Gemini/Claude compatible API interface for CLI. This allows you to use CLI models with tools and libraries designed for the OpenAI/Gemini/Claude API.

Features

  • OpenAI/Gemini/Claude compatible API endpoints for CLI models
  • Support for both streaming and non-streaming responses
  • Function calling/tools support
  • Multimodal input support (text and images)
  • Multiple account support with load balancing
  • Simple CLI authentication flow
  • Support for Generative Language API Key
  • Support Gemini CLI with multiple account load balancing

Installation

Prerequisites

  • Go 1.24 or higher
  • A Google account with access to CLI models

Building from Source

  1. Clone the repository:

    git clone https://github.com/luispater/CLIProxyAPI.git
    cd CLIProxyAPI
  2. Build the application:

    go build -o cli-proxy-api ./cmd/server

Usage

Authentication

Before using the API, you need to authenticate with your Google account:

./cli-proxy-api --login

If you are an old gemini code user, you may need to specify a project ID:

./cli-proxy-api --login --project_id <your_project_id>

Starting the Server

Once authenticated, start the server:

./cli-proxy-api

By default, the server runs on port 8317.

API Endpoints

List Models

GET http://localhost:8317/v1/models

Chat Completions

POST http://localhost:8317/v1/chat/completions

Request body example:

{
  "model": "gemini-2.5-pro",
  "messages": [
    {
      "role": "user",
      "content": "Hello, how are you?"
    }
  ],
  "stream": true
}

Using with OpenAI Libraries

You can use this proxy with any OpenAI-compatible library by setting the base URL to your local server:

Python (with OpenAI library)

from openai import OpenAI

client = OpenAI(
    api_key="dummy",  # Not used but required
    base_url="http://localhost:8317/v1"
)

response = client.chat.completions.create(
    model="gemini-2.5-pro",
    messages=[
        {"role": "user", "content": "Hello, how are you?"}
    ]
)

print(response.choices[0].message.content)

JavaScript/TypeScript

import OpenAI from 'openai';

const openai = new OpenAI({
  apiKey: 'dummy', // Not used but required
  baseURL: 'http://localhost:8317/v1',
});

const response = await openai.chat.completions.create({
  model: 'gemini-2.5-pro',
  messages: [
    { role: 'user', content: 'Hello, how are you?' }
  ],
});

console.log(response.choices[0].message.content);

Supported Models

  • gemini-2.5-pro
  • gemini-2.5-flash
  • And it automates switching to various preview versions

Configuration

The server uses a YAML configuration file (config.yaml) located in the project root directory by default. You can specify a different configuration file path using the --config flag:

./cli-proxy --config /path/to/your/config.yaml

Configuration Options

Parameter Type Default Description
port integer 8317 The port number on which the server will listen
auth-dir string "~/.cli-proxy-api" Directory where authentication tokens are stored. Supports using ~ for home directory
proxy-url string "" Proxy url, support socks5/http/https protocol, example: socks5://user:pass@192.168.1.1:1080/
quota-exceeded object {} Configuration for handling quota exceeded
quota-exceeded.switch-project boolean true Whether to automatically switch to another project when a quota is exceeded
quota-exceeded.switch-preview-model boolean true Whether to automatically switch to a preview model when a quota is exceeded
debug boolean false Enable debug mode for verbose logging
api-keys string[] [] List of API keys that can be used to authenticate requests
generative-language-api-key string[] [] List of Generative Language API keys

Example Configuration File

# Server port
port: 8317

# Authentication directory (supports ~ for home directory)
auth-dir: "~/.cli-proxy-api"

# Enable debug logging
debug: false

# Proxy url, support socks5/http/https protocol, example: socks5://user:pass@192.168.1.1:1080/
proxy-url: ""

# Quota exceeded behavior
quota-exceeded:
   switch-project: true # Whether to automatically switch to another project when a quota is exceeded
   switch-preview-model: true # Whether to automatically switch to a preview model when a quota is exceeded

# API keys for authentication
api-keys:
  - "your-api-key-1"
  - "your-api-key-2"

# API keys for official Generative Language API
generative-language-api-key:
  - "AIzaSy...01"
  - "AIzaSy...02"
  - "AIzaSy...03"
  - "AIzaSy...04"

Authentication Directory

The auth-dir parameter specifies where authentication tokens are stored. When you run the login command, the application will create JSON files in this directory containing the authentication tokens for your Google accounts. Multiple accounts can be used for load balancing.

API Keys

The api-keys parameter allows you to define a list of API keys that can be used to authenticate requests to your proxy server. When making requests to the API, you can include one of these keys in the Authorization header:

Authorization: Bearer your-api-key-1

Official Generative Language API

The generative-language-api-key parameter allows you to define a list of API keys that can be used to authenticate requests to the official Generative Language API.

Gemini CLI with multiple account load balancing

Start CLI Proxy API server, and then set the CODE_ASSIST_ENDPOINT environment variable to the URL of the CLI Proxy API server.

export CODE_ASSIST_ENDPOINT="http://127.0.0.1:8317"

The server will relay the loadCodeAssist, onboardUser, and countTokens requests. And automatically load balance the text generation requests between the multiple accounts.

Note

This feature only allows local access because I couldn't find a way to authenticate the requests.
I hardcoded 127.0.0.1 into the load balancing.

Run with Docker

Run the following command to login:

docker run --rm -p 8085:8085 -v /path/to/your/config.yaml:/CLIProxyAPI/config.yaml -v /path/to/your/auth-dir:/root/.cli-proxy-api eceasy/cli-proxy-api:latest /CLIProxyAPI/CLIProxyAPI --login

Run the following command to start the server:

docker run --rm -p 8317:8317 -v /path/to/your/config.yaml:/CLIProxyAPI/config.yaml -v /path/to/your/auth-dir:/root/.cli-proxy-api eceasy/cli-proxy-api:latest

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

Wrap Gemini CLI as an OpenAI/Gemini/Claude compatible API service, allowing you to enjoy the free Gemini 2.5 Pro model through API

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •