Skip to content

lxm/digix-2022

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is the code demo for the paper:
Dong, Y., Lu, X., Li, R., Song, W., van Arem, B. and Farah, H., 2023. Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning. arXiv preprint arXiv:2312.04398.

Prepare environment

pytorch version: 1.8.1+cu111

apt -y install python3-tk
pip install timm==0.3.2
pip install einops

Dataset

https://drive.google.com/file/d/1qULO6dt0rjHTZcXP62FT4cqPq60XmkDe/view?usp=sharing

Trian

file tree

├── UM-MAE
│   ├── DET
│   │   └── configs
│   ├── IN1K
│   ├── SEG
│   │   ├── configs
│   │   └── mmcv_custom
│   ├── __pycache__
│   ├── figs
│   ├── util
│   │   └── __pycache__
│   ├── visual
│   └── work_dirs
│       └── allimage
└── huaweidata
    ├── pretrain-allimage
    │   └── all
    ├── test_images
    └── train_image

Pretrain

Use all the test data and train data(without labels) to pre-train the model

cd UM-MAE
make pretrain

Treat it as a 2-class classification problem

Categorize the dataset into two categories, 0,1, with 0 representing normal image data and 1 representing abnormal instance. then run the following code

make finetunec2
make testc2

Treat it as an 8-class classification problem

Categorize the dataset into 0-7, in total 8 classes, each representing one type of data, if the image has multiple defects, it will be placed into multiple classes of data

make finetunec8
make testc8

Treat it as a 9-class classification problem

Categorize the dataset into 0-8, 9 categories, data with each abnormal image instance (regardless of what type of anomaly is ) will be placed in the ninth category

make finetune9
make testc9

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published