Uses tokenized query returned by python-sqlparse
and generates query metadata.
Extracts column names and tables used by the query. Automatically conduct column alias resolution, sub queries aliases resolution as well as tables aliases resolving.
Provides also a helper for normalization of SQL queries.
Supported queries syntax:
- MySQL
- PostgreSQL
- Sqlite
- MSSQL
- Apache Hive
(note that listed backends can differ quite substantially but should work in regard of query types supported by sql-metadata
)
You can test the capabilities of sql-metadata
with an interactive demo: https://sql-app.infocruncher.com/
pip install sql-metadata
from sql_metadata import Parser
# extract raw sql-metadata tokens
Parser("SELECT * FROM foo").tokens
# ['SELECT', '*', 'FROM', 'foo']
from sql_metadata import Parser
# get columns from query - for more examples see `tests/test_getting_columns.py`
Parser("SELECT test, id FROM foo, bar").columns
# ['test', 'id']
Parser("INSERT /* VoteHelper::addVote xxx */ INTO `page_vote` (article_id,user_id,`time`) VALUES ('442001','27574631','20180228130846')").columns
# ['article_id', 'user_id', 'time']
parser = Parser("SELECT a.* FROM product_a.users AS a JOIN product_b.users AS b ON a.ip_address = b.ip_address")
# note that aliases are auto-resolved
parser.columns
# ['product_a.*', 'product_a.users.ip_address', 'product_b.users.ip_address']
# note that you can also extract columns with their place in the query
# which will return dict with lists divided into select, where, order_by, group_by, join, insert and update
parser.columns_dict
# {'select': ['product_a.users.*'], 'join': ['product_a.users.ip_address', 'product_b.users.ip_address']}
from sql_metadata import Parser
parser = Parser("SELECT a, (b + c - u) as alias1, custome_func(d) alias2 from aa, bb order by alias1")
# note that columns list do not contain aliases of the columns
parser.columns
# ["a", "b", "c", "u", "d"]
# but you can still extract aliases names
parser.columns_aliases_names
# ["alias1", "alias2"]
# aliases are resolved to the columns which they refer to
parser.columns_aliases
# {"alias1": ["b", "c", "u"], "alias2": "d"}
# you can also extract aliases used by section of the query in which they are used
parser.columns_aliases_dict
# {"order_by": ["alias1"], "select": ["alias1", "alias2"]}
# the same applies to aliases used in queries section when you extract columns_dict
# here only the alias is used in order by but it's resolved to actual columns
assert parser.columns_dict == {'order_by': ['b', 'c', 'u'],
'select': ['a', 'b', 'c', 'u', 'd']}
from sql_metadata import Parser
# get tables from query - for more examples see `tests/test_getting_tables.py`
Parser("SELECT a.* FROM product_a.users AS a JOIN product_b.users AS b ON a.ip_address = b.ip_address").tables
# ['product_a.users', 'product_b.users']
Parser("SELECT test, id FROM foo, bar").tables
# ['foo', 'bar']
# you can also extract aliases of the tables as a dictionary
parser = Parser("SELECT f.test FROM foo AS f")
# get table aliases
parser.tables_aliases
# {'f': 'foo'}
# note that aliases are auto-resolved for columns
parser.columns
# ["foo.test"]
from sql_metadata import Parser
parser = Parser(
"INSERT /* VoteHelper::addVote xxx */ INTO `page_vote` (article_id,user_id,`time`) "
"VALUES ('442001','27574631','20180228130846')"
)
# extract values from query
parser.values
# ["442001", "27574631", "20180228130846"]
# extract a dictionary with column-value pairs
parser.values_dict
#{"article_id": "442001", "user_id": "27574631", "time": "20180228130846"}
# if column names are not set auto-add placeholders
parser = Parser(
"INSERT IGNORE INTO `table` VALUES (9, 2.15, '123', '2017-01-01');"
)
parser.values
# [9, 2.15, "123", "2017-01-01"]
parser.values_dict
#{"column_1": 9, "column_2": 2.15, "column_3": "123", "column_4": "2017-01-01"}
from sql_metadata import Parser
Parser('SELECT foo_limit FROM bar_offset LIMIT 50 OFFSET 1000').limit_and_offset
# (50, 1000)
Parser('SELECT foo_limit FROM bar_offset limit 2000,50').limit_and_offset
# (50, 2000)
from sql_metadata import Parser
parser = Parser(
"""
WITH
database1.tableFromWith AS (SELECT aa.* FROM table3 as aa
left join table4 on aa.col1=table4.col2),
test as (SELECT * from table3)
SELECT
"xxxxx"
FROM
database1.tableFromWith alias
LEFT JOIN database2.table2 ON ("tt"."ttt"."fff" = "xx"."xxx")
"""
)
# get names/ aliases of with statements
parser.with_names
# ["database1.tableFromWith", "test"]
# get definition of with queries
parser.with_queries
# {"database1.tableFromWith": "SELECT aa.* FROM table3 as aa left join table4 on aa.col1=table4.col2"
# "test": "SELECT * from table3"}
# note that names of with statements do not appear in tables
parser.tables
# ["table3", "table4", "database2.table2"]
from sql_metadata import Parser
parser = Parser(
"""
SELECT COUNT(1) FROM
(SELECT std.task_id FROM some_task_detail std WHERE std.STATUS = 1) a
JOIN (SELECT st.task_id FROM some_task st WHERE task_type_id = 80) b
ON a.task_id = b.task_id;
"""
)
# get sub-queries dictionary
parser.subqueries
# {"a": "SELECT std.task_id FROM some_task_detail std WHERE std.STATUS = 1",
# "b": "SELECT st.task_id FROM some_task st WHERE task_type_id = 80"}
# get names/ aliases of sub-queries / derived tables
parser.subqueries_names
# ["a", "b"]
# note that columns coming from sub-queries are resolved to real columns
parser.columns
#["some_task_detail.task_id", "some_task_detail.STATUS", "some_task.task_id",
# "task_type_id"]
# same applies for columns_dict, note the join columns are resolved
parser.columns_dict
#{'join': ['some_task_detail.task_id', 'some_task.task_id'],
# 'select': ['some_task_detail.task_id', 'some_task.task_id'],
# 'where': ['some_task_detail.STATUS', 'task_type_id']}
See tests
file for more examples of a bit more complex queries.
from sql_metadata import Parser
parser = Parser('SELECT /* Test */ foo FROM bar WHERE id in (1, 2, 56)')
# generalize query
parser.generalize
# 'SELECT foo FROM bar WHERE id in (XYZ)'
# remove comments
parser.without_comments
# 'SELECT foo FROM bar WHERE id in (1, 2, 56)'
# extract comments
parser.comments
# ['/* Test */']
See test/test_normalization.py
file for more examples of a bit more complex queries.
sql_metadata.compat
module has been implemented to make the introduction of sql-metadata v2.0 smoother.
You can use it by simply changing the imports in your code from:
from sql_metadata import get_query_columns, get_query_tables
into:
from sql_metadata.compat import get_query_columns, get_query_tables
The following functions from the old API are available in the sql_metadata.compat
module:
generalize_sql
get_query_columns
(since #131 columns aliases ARE NOT returned by this function)get_query_limit_and_offset
get_query_tables
get_query_tokens
preprocess_query
Created and maintained by @macbre with a great contributions from @collerek and the others.
- aborecki (https://github.com/aborecki)
- collerek (https://github.com/collerek)
- dylanhogg (https://github.com/dylanhogg)
- macbre (https://github.com/macbre)