We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
hi I am trying to generate the sample heatmap and I get a shape error. here is the command:
CUDA_VISIBLE_DEVICES=1 python create_heatmaps.py --config config_template.yaml
and here is the traceback
Traceback (most recent call last): File "/mnt/data08/shared/jkaczmarzyk/mtl/CLAM/create_heatmaps.py", line 371, in <module> compute_from_patches(wsi_object=wsi_object, clam_pred=Y_hats[0], model=model, feature_extractor=feature_extractor, batch_size=exp_args.batch_size, **wsi_kwargs, File "/mnt/data08/shared/jkaczmarzyk/mtl/CLAM/vis_utils/heatmap_utils.py", line 77, in compute_from_patches A[score_idx] = score2percentile(A[score_idx], ref_scores) ValueError: could not broadcast input array from shape (195,) into shape (1,)
I did not change the create_heatmaps.py script. how can i solve this issue?
exp_arguments n_classes : 2 save_exp_code : HEATMAP_OUTPUT raw_save_dir : heatmaps/heatmap_raw_results production_save_dir : heatmaps/heatmap_production_results batch_size : 384 data_arguments data_dir : heatmaps/demo/slides/ data_dir_key : source process_list : heatmap_demo_dataset.csv preset : presets/bwh_biopsy.csv slide_ext : .svs label_dict : {'LUAD': 0, 'LSCC': 1} patching_arguments patch_size : 256 overlap : 0.5 patch_level : 0 custom_downsample : 1 model_arguments ckpt_path : heatmaps/demo/ckpts/s_0_checkpoint.pt model_type : clam_sb initiate_fn : initiate_model model_size : small drop_out : True heatmap_arguments vis_level : 1 alpha : 0.4 blank_canvas : False save_orig : True save_ext : jpg use_ref_scores : True blur : False use_center_shift : True use_roi : False calc_heatmap : True binarize : False binary_thresh : -1 custom_downsample : 1 cmap : jet sample_arguments samples : [{'name': 'topk_high_attention', 'sample': True, 'seed': 1, 'k': 15, 'mode': 'topk'}] Continue? Y/N y patch_size: 256 x 256, with 0.50 overlap, step size is 128 x 128 list of slides to process: slide_id label process status seg_level sthresh ... a_h max_n_holes vis_level line_thickness use_padding contour_fn 0 C3L-03262-22 LUAD 1 tbp -1 15 ... 1.0 2 -1 50 True four_pt 1 C3L-01663-21 LSCC 1 tbp -1 15 ... 1.0 2 -1 50 True four_pt [2 rows x 18 columns] initializing model from checkpoint ckpt path: heatmaps/demo/ckpts/s_0_checkpoint.pt Init Model CLAM_SB( (attention_net): Sequential( (0): Linear(in_features=1024, out_features=512, bias=True) (1): ReLU() (2): Dropout(p=0.25, inplace=False) (3): Attn_Net_Gated( (attention_a): Sequential( (0): Linear(in_features=512, out_features=256, bias=True) (1): Tanh() (2): Dropout(p=0.25, inplace=False) ) (attention_b): Sequential( (0): Linear(in_features=512, out_features=256, bias=True) (1): Sigmoid() (2): Dropout(p=0.25, inplace=False) ) (attention_c): Linear(in_features=256, out_features=1, bias=True) ) ) (classifiers): Linear(in_features=512, out_features=2, bias=True) (instance_classifiers): ModuleList( (0): Linear(in_features=512, out_features=2, bias=True) (1): Linear(in_features=512, out_features=2, bias=True) ) (instance_loss_fn): CrossEntropyLoss() ) Total number of parameters: 790791 Total number of trainable parameters: 790791 Done! processing: C3L-03262-22.svs slide id: C3L-03262-22 top left: None bot right: None seg_level: -1 sthresh: 15 mthresh: 11 close: 2 use_otsu: False keep_ids: [] exclude_ids: [] a_t: 1 a_h: 1 max_n_holes: 2 vis_level: -1 line_thickness: 50 Initializing WSI object Done! Y_hat: LUAD, Y: LUAD, Y_prob: ['0.9962', '0.0038'] sampling topk_high_attention coord: [5732 3396] score: 100.000 coord: [3172 3652] score: 99.487 coord: [4964 5444] score: 98.974 coord: [4964 3908] score: 98.462 coord: [3684 3396] score: 97.949 coord: [3172 3908] score: 97.436 coord: [5988 4932] score: 96.923 coord: [5988 4676] score: 96.410 coord: [5988 3396] score: 95.897 coord: [4964 5188] score: 95.385 coord: [6244 4676] score: 94.872 coord: [3172 4420] score: 94.359 coord: [5476 3396] score: 93.846 coord: [5732 4164] score: 93.333 coord: [4196 4164] score: 92.821 creating heatmap for: top_left: (0, 0) bot_right: (9959, 9023) w: 2489, h: 2255 scaled patch size: [64 64] computing foreground tissue mask detected 899730/5612695 of region as tissue computing heatmap image total of 195 patches progress: 38/195 progress: 77/195 progress: 116/195 progress: 155/195 progress: 194/195 Done computing blend using block size: 1024 x 1024 processing 0/2 contours Bounding Box: 5681 6038 1842 1077 Contour Area: 628940.0 Extracted 13 coordinates processing 1/2 contours Bounding Box: 2404 2884 4847 3951 Contour Area: 13722139.0 Extracted 760 coordinates filtered a total of 773 coordinates total number of patches to process: 773 number of batches: 3 /mnt/data08/shared/jkaczmarzyk/mtl/CLAM/utils/utils.py:37: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at /opt/conda/conda-bld/pytorch_1659484808560/work/torch/csrc/utils/tensor_new.cpp:201.) label = torch.LongTensor([item[1] for item in batch]) /mnt/data08/shared/jkaczmarzyk/mtl/CLAM/utils/utils.py:37: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at /opt/conda/conda-bld/pytorch_1659484808560/work/torch/csrc/utils/tensor_new.cpp:201.) label = torch.LongTensor([item[1] for item in batch]) /mnt/data08/shared/jkaczmarzyk/mtl/CLAM/utils/utils.py:37: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at /opt/conda/conda-bld/pytorch_1659484808560/work/torch/csrc/utils/tensor_new.cpp:201.) label = torch.LongTensor([item[1] for item in batch]) Traceback (most recent call last): File "/mnt/data08/shared/jkaczmarzyk/mtl/CLAM/create_heatmaps.py", line 371, in <module> compute_from_patches(wsi_object=wsi_object, clam_pred=Y_hats[0], model=model, feature_extractor=feature_extractor, batch_size=exp_args.batch_size, **wsi_kwargs, File "/mnt/data08/shared/jkaczmarzyk/mtl/CLAM/vis_utils/heatmap_utils.py", line 77, in compute_from_patches A[score_idx] = score2percentile(A[score_idx], ref_scores) ValueError: could not broadcast input array from shape (195,) into shape (1,)
The text was updated successfully, but these errors were encountered:
i got it working, but i do not know if my solution is valid. i squeezed the dimensions of both arrays in score2percentile
def score2percentile(score, ref): percentile = percentileofscore(ref.squeeze(), score.squeeze()) return percentile
Sorry, something went wrong.
No branches or pull requests
hi I am trying to generate the sample heatmap and I get a shape error. here is the command:
and here is the traceback
I did not change the create_heatmaps.py script. how can i solve this issue?
All console output from the command:
The text was updated successfully, but these errors were encountered: