A comprehensive framework for building and maintaining enterprise-scale AI and data platforms with well-documented architecture patterns.
To provide a structured approach for:
- Building scalable data & AI architectures
- Maintaining architectural consistency
- Documenting decisions and patterns
- Enabling collaborative design reviews
-
/patterns
— Enterprise data & AI patterns- Data Ingestion & Processing
- Data Governance & Security
- Data Quality & Testing
- MLOps & Model Lifecycle
- Pipeline Orchestration
- Monitoring & Observability
-
/design-docs
— Detailed system designs- Platform Components
- Integration Patterns
- Scaling Strategies
- Security Architecture
-
/adrs
— Architecture Decision Records- Platform Choices
- Technology Selections
- Implementation Decisions
-
/diagrams
— Architecture Diagrams (C4 Model)- System Context (C1)
- Containers (C2)
- Components (C3)
- Code (C4)
-
/templates
— Standardized Documentation -
/docs
— Generated Documentation Site
-
Setup Environment
# Install dependencies mkdir -p patterns/data-ingestion patterns/governance patterns/quality patterns/mlops patterns/orchestration patterns/monitoring mkdir -p design-docs/components design-docs/integration design-docs/scaling design-docs/security mkdir -p adrs/platform adrs/technology adrs/implementation mkdir -p diagrams/context diagrams/containers diagrams/components diagrams/code mkdir -p templates docs scripts touch scripts/setup.sh scripts/render_diagrams.sh chmod +x scripts/setup.sh scripts/render_diagrams.sh
-
Create Architecture Documents
- Use templates from
/templates
- Follow C4 model conventions
- Include required diagrams
- Use templates from
-
Review Process
- Create feature branch
- Follow PR template
- Ensure diagram generation
- Update documentation
- Documentation as Code
- Diagram Automation
- Consistent Patterns
- Collaborative Reviews
- Version Control
MIT License