Skip to content
/ MadsR Public

an R package for handling data from the danish microbiological system MADS

License

Notifications You must be signed in to change notification settings

marcmtk/MadsR

Repository files navigation

MadsR - let's get to the fun part.

MadsR is a package designed for my own uses with data from the danish microbiological system MADS.

Installation

devtools::install_github("marcmtk/MadsR")

Functions implemented

This package provides 6 functions to assist with epidemiological analyses of MADS data and 2 functions to generate MADS like data for testing purposes.

  • read_mads - reads a csv file, applies appropriate types to columns, adds time columns and splits name of sender into useful categories.
  • filter_cases - easy filtering of first episode in a timewindow.
  • since_last - calculates the time since a new positive sample was last seen.
  • tally_by_department - calculates positive cases by department, provides functions to exclude observations based on different windows, see examples
  • slplot - a "Since last" plot
  • tally_map - a heatmap of tally data
  • generate_MADS_like_data - as the name implies
  • generate_res - generates resistance patterns

Examples

Consider the dataset provided in analyser-like.csv with read_csv vs read_mads

df <- read.csv("./extdata/analyser-like.csv")
str(df)

## 'data.frame':    1000 obs. of  7 variables:
##  $ cprnr.  : int  168 6 339 190 325 333 212 157 107 72 ...
##  $ navn    : logi  NA NA NA NA NA NA ...
##  $ afsendt : int  29052013 16102012 12042012 25112012 8032013 2042012 3102012 15102013 1082012 21112012 ...
##  $ modtaget: logi  NA NA NA NA NA NA ...
##  $ besvaret: logi  NA NA NA NA NA NA ...
##  $ afsender: Factor w/ 352 levels "00071","00389",..: 278 344 343 340 340 282 306 314 340 231 ...
##  $ result  : Factor w/ 2 levels "Negativ","Positiv": 1 1 1 1 1 1 1 1 1 1 ...

head(df)

##   cprnr. navn  afsendt modtaget besvaret afsender  result
## 1    168   NA 29052013       NA       NA    47454 Negativ
## 2      6   NA 16102012       NA       NA      S R Negativ
## 3    339   NA 12042012       NA       NA      S Q Negativ
## 4    190   NA 25112012       NA       NA      S N Negativ
## 5    325   NA  8032013       NA       NA      S N Negativ
## 6    333   NA  2042012       NA       NA    47535 Negativ

df <- read_mads("./extdata/analyser-like.csv", "analyser")
str(df)

## 'data.frame':    1000 obs. of  16 variables:
##  $ cprnr.  : int  168 6 339 190 325 333 212 157 107 72 ...
##  $ navn    : logi  NA NA NA NA NA NA ...
##  $ afsendt : Date, format: "2013-05-29" "2012-10-16" ...
##  $ modtaget: Date, format: NA NA ...
##  $ besvaret: Date, format: NA NA ...
##  $ afsender: chr  "47454" "S R" "S Q" "S N" ...
##  $ hospital: chr  "AP" "S" "S" "S" ...
##  $ afdeling: chr  "" "R" "Q" "N" ...
##  $ afsnit  : chr  NA NA NA NA ...
##  $ result  : chr  "Negativ" "Negativ" "Negativ" "Negativ" ...
##  $ year    : num  2013 2012 2012 2012 2013 ...
##  $ quarter : num  2 4 2 4 1 2 4 4 3 4 ...
##  $ month   : Ord.factor w/ 12 levels "January"<"February"<..: 5 10 4 11 3 4 10 10 8 11 ...
##  $ week    : num  22 42 15 48 10 14 40 42 31 47 ...
##  $ weekday : Ord.factor w/ 7 levels "Sunday"<"Monday"<..: 4 3 5 1 6 2 4 3 4 4 ...
##  $ hosp_afd: chr  "AP " "S R" "S Q" "S N" ...

head(df)

##   cprnr. navn    afsendt modtaget besvaret afsender hospital afdeling
## 1    168   NA 2013-05-29     <NA>     <NA>    47454       AP         
## 2      6   NA 2012-10-16     <NA>     <NA>      S R        S        R
## 3    339   NA 2012-04-12     <NA>     <NA>      S Q        S        Q
## 4    190   NA 2012-11-25     <NA>     <NA>      S N        S        N
## 5    325   NA 2013-03-08     <NA>     <NA>      S N        S        N
## 6    333   NA 2012-04-02     <NA>     <NA>    47535       AP         
##   afsnit  result year quarter    month week   weekday hosp_afd
## 1   <NA> Negativ 2013       2      May   22 Wednesday      AP 
## 2   <NA> Negativ 2012       4  October   42   Tuesday      S R
## 3   <NA> Negativ 2012       2    April   15  Thursday      S Q
## 4   <NA> Negativ 2012       4 November   48    Sunday      S N
## 5   <NA> Negativ 2013       1    March   10    Friday      S N
## 6   <NA> Negativ 2012       2    April   14    Monday      AP

Let's filter some cases and look at the results

cases <- filter_cases(df, result=="Positiv", min.days.to.new.episode=14)
table(cases$hosp_afd, cases$episode)

##      
##        1  2  3
##   AP  28  5  1
##   O A  2  0  0
##   O B  1  0  0
##   O C  2  0  0
##   O D  1  1  0
##   O E  1  0  0
##   O F  3  0  0
##   O H  3  0  0
##   O I  1  0  0
##   O K  3  0  0
##   O L  3  0  0
##   O M  3  1  0
##   O N  1  0  0
##   O O  1  0  0
##   O P  1  2  0
##   O Q  1  1  0
##   O S  1  0  0
##   O T  1  0  0
##   O U  0  1  0
##   O V  1  0  0
##   O W  1  0  0
##   O Y  2  0  0
##   O Z  2  0  0
##   S A  1  0  0
##   S C  2  0  0
##   S F  2  0  0
##   S I  4  0  0
##   S J  2  0  0
##   S K  2  0  0
##   S M  1  0  0
##   S N  0  1  0
##   S O  2  0  0
##   S P  1  0  0
##   S T  3  1  0
##   S U  2  0  0
##   S X  2  1  0
##   S Y  1  0  0
##   S Z  3  0  0

table(cases$sl)

## 
##  15  17  53  95 124 144 306 315 343 369 437 470 530 534 598 
##   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

Now let's look at a since last plot, after all there may be an epidemic out there!

since_last(df) %>% slplot()

since_last(df) %>% filter(hosp_afd=="S V") %>% slplot()

filter(df, hosp_afd == "S V") %>% since_last() %>% slplot()

Note the difference between plot 2 and plot 3. It is very important that time since last positive case is computed after relevant filtering.

Last useful functions, tallying by department and heatmapping the results:1

tbd <- tally_by_department(df, "patient", result == "Positiv")

## Joining by: c("hosp_afd", "year", "month")
## Joining by: c("hosp_afd", "year", "month")

tally_map(tbd)

filter(tbd, hosp_afd != "AP ") %>% tally_map

Session info

sessionInfo()

## R version 3.2.3 (2015-12-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 10240)
## 
## locale:
## [1] LC_COLLATE=Danish_Denmark.1252  LC_CTYPE=Danish_Denmark.1252   
## [3] LC_MONETARY=Danish_Denmark.1252 LC_NUMERIC=C                   
## [5] LC_TIME=Danish_Denmark.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] ggplot2_2.1.0 dplyr_0.4.3   MadsR_0.1.2  
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.4      knitr_1.12.3     magrittr_1.5     munsell_0.4.3   
##  [5] lattice_0.20-33  colorspace_1.2-6 R6_2.1.2         stringr_1.0.0   
##  [9] plyr_1.8.3       tools_3.2.3      parallel_3.2.3   grid_3.2.3      
## [13] nlme_3.1-127     gtable_0.2.0     mgcv_1.8-12      DBI_0.3.1       
## [17] htmltools_0.3.5  yaml_2.1.13      lazyeval_0.1.10  assertthat_0.1  
## [21] digest_0.6.9     Matrix_1.2-5     gridExtra_2.2.1  formatR_1.3     
## [25] tidyr_0.4.1      viridis_0.3.4    evaluate_0.8.3   rmarkdown_0.9.5 
## [29] labeling_0.3     stringi_1.0-1    scales_0.4.0     lubridate_1.5.6

About

an R package for handling data from the danish microbiological system MADS

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages