A tool to evaluate the performance of various machine learning algorithms and preprocessing steps to find a good baseline for a given task.
pip install evaluate
import evaluate
from sklearn import datasets
data = datasets.load_iris()
x, y = data.data, data.target
results = evaluate(task='classification', data=(x, y))
results['test_score'].plot.bar()
This tool performs common preprocessing steps such as feature scaling, one-hot encoding etc., and runs various ML algorithms such as Random Forests, SVM etc. It then evaluates the performance of each preprocessing step and ML algorithm and provides scores for each. These results can be used to quickly identify preprocessing steps and ML algorithms that perform well to form a good baseline which can be used to develop better models.
evaluate(task,
data,
test_data=.2,
columns=None,
preprocessors=None,
estimators=None)
task
:'classification'
or'regression'
data
: Tuple ofx, y
used for training the modeltest_data
: Tuple ofx, y
or a number representing the proportion ofdata
to be used for scoring the modelcolumns
: Dictionary of lists mapping column types to column names. If not specified numeric and categorical columns are automatically identifiedpreprocessors
: List of names of available preprocessors or a customPreprocessors
objectestimators
: List of names of available estimators or a customEstimators
object
Dictionary of pandas DataFrames with estimator names as index and preprocessor names as column names with the following keys:
{
'test_score': ...,
'train_score': ...,
'fit_time': ...,
'score_time': ...,
}
results = evaluate(...)
assert isinstance(results, dict)
scores = results['test_score']
assert isinstance(scores, pandas.DataFrame)
scores.plot.bar()
Name | Column Type | Description |
---|---|---|
n | numeric | Handle missing data |
n:s | numeric | Standardize features |
c | categorical | Handle missing data and perform one-hot encoding |
o | ordinal | Handle missing data and perform ordinal encoding |
t:c | text | Convert to a matrix of token counts |
t:c=2 | text | Convert to a matrix of token counts including bigrams |
t:t | text | Convert to a matrix of TF-IDF features |
t:t=2 | text | Convert to a matrix of TF-IDF features including bigrams |
Multiple preprocessors can be combined into one by separating them with ,
:
results = evaluate(..., preprocessors=['n,c,o', 'n:s,c,o'])
Custom preprocessors can be added as:
from evaluate import evaluate, Preprocessors
preprocessors = Preprocessors()
preprocessors.add('custom_preprocessor', CustomPreprocessor())
results = evaluate(..., preprocessors=preprocessors)
Name of the custom preprocessor must be unique.
Classification | Regression |
---|---|
XGBClassifier | XGBRegressor |
LGBMClassifier | LGBMRegressor |
RandomForestClassifier | RandomForestRegressor |
SVC | SVR |
LogisticRegression | LinearRegression |
KNeighborsClassifier | KNeighborsRegressor |
AdaBoostClassifier | AdaBoostRegressor |
ExtraTreesClassifier | ExtraTreesRegressor |
GradientBoostingClassifier | GradientBoostingRegressor |
DecisionTreeClassifier | DecisionTreeRegressor |
DummyClassifier | DummyRegressor |
Custom estimators can be added as:
from evaluate import evaluate, Estimators
estimators = Estimators(task='classification')
estimators.add('custom_estimator', CustomEstimator())
results = evaluate(..., estimators=estimators)
Name of the custom estimator must be unique.