Library of astronomical algorithms to compute planetary ephemeris written in Python.
PyPlanets at its current state is basically a refactored version of
PyMeeus. PyMeeus itself is a Python implementation of the astronomical
algorithms described in the classical book "Astronomical Algorithms, 2nd
Edition, Willmann-Bell Inc. (1998)" by Jean Meeus. The original author
of PyMeeus is Dagoberto Salazar. This fork is based on commit
9b25a79
(https://github.com/architest/pymeeus/commit/9b25a790999251afd5d68c074e144df9f74a6dfd).
That’s a valid question of course, especially since no (or only little) functional enhancements are made. But that is also part of the answer. Looking for astronomical libraries to "play around", I stumbled across PyMeeus which really gets most of the job done. On the other hand, when trying to extend PyMeeus with some features I got myself lost a bit in the functional coding so I decided to restructure and refactor the code base to my liking (and experience) before adding new features.
Main guiding principles for refactoring have been object-orientation and a clearer separation of concerns to ease the handling of the modules and facilitate extensibility. As a side-effect it is now e.g. straight forward to compute e.g. the mars-centric co-ordinates of Earth for a given point in time. Well, you might correctly object here "Why would someone require that?", but
- it comes at no extra cost, since it’s just a side effect of object orientation making it clearer, that the relative ecliptical position of a planet depends on the view point and therefore is not a property of a planet and
- maybe Elon Musk will find this useful in his new home someday (@Elon: please drop me a note then).
The most obvious difference is the file (module) structure, and an increased number of modules with a lower number of lines of code in total (hopefully increasing maintainability). The higher number of modules is due to
- moved VSOP87 parameters to separate files (../parameters)
- moved usage examples from original sources to separate modules (../examples/pymeeus)
- added common base class for planets (Planet.py)
- separated class Ellipsoid and related methods from Earth.py to ellipsoid.py
- restructured (simplified) method
vsop_pos(...)
of module Coordinates
A lot of effort has been made by Dagoberto to create meaningful tests and documentation for the PyMeeus library in the form of test cases, usage examples and inline documentation including doctests. These are preserved to its full extent, but needed to be updated to the new module structure. Basically it boils down to three changes:
PyMeeus:
# Let's now compute the heliocentric position for a given epoch
epoch = Epoch(2018, 10, 27.0)
lon, lat, r = Mars.geometric_heliocentric_position(epoch)
PyPlanets:
# Let's now compute the heliocentric position for a given epoch
epoch = Epoch(2018, 10, 27.0)
mars = Mars(epoch)
lon, lat, r = mars.geometric_heliocentric_position()
PyMeeus:
# Compute the geocentric position for 1992/12/20:
epoch = Epoch(1992, 12, 20.0)
ra, dec, elon = Mars.geocentric_position(epoch)
PyPlanets:
epoch = Epoch(1992, 12, 20.0)
mars = Mars(epoch)
earth = Earth(epoch)
constellation = Constellation(earth, mars)
ra, dec, elon = constellation.geocentric_position()
Especially this change seems a bit verbose, but it is planned to a) generalize the Constellation class also to be useful for viewpoints other than earth and b) introduce a convenience pattern to provide the usual geocentric coordinates.
PyMeeus:
# Find the epoch of the Aphelion closer to 2032/1/1
epoch = Epoch(2032, 1, 1.0)
e = Mars.perihelion_aphelion(epoch, perihelion=False)
PyPlanets:
# Find the epoch of the Aphelion closer to 2032/1/1
epoch = Epoch(2032, 1, 1.0)
e = Mars(epoch).aphelion()
For precise planetary positions it is necessary to introduce light-time corrections for computed and observed positions of planets. The calculation used in the PyMeeus library computes the correction once. While in most cases probably sufficient, the accuracy can be enhanced by recalculating the correction factor several times until the arithmetic precision of the machine is reached. Typically, about 4 - 5 iterations are required, not having too much impact on processing times.
To make sure refactoring didn’t break obvious things, two measures were taken:
- Usage examples of PyMeeus have been outsourced to ./examples/pymeeus
and ported to the slightly new API. A script executes the examples
against the “old” and “new” API and compares the output to
stdout
. - Tests from PyMeeus are preserved under ./tests/pymeeus and ported to the slightly new API.
Amongst other things, it is planned to
- add more algorithms from Meeus’ book e.g. including ephemeris of moons
- add some visualization options, e.g. by integrating Jupyter notebooks
- have a look at Astropy and find ways to integrate with or benefit from
The easiest way of installing PyPlanets is using pip:
pip install pyplanets
Or, for a per-user installation:
pip install --user pyplanets
Author: Martin Fünffinger
Distributed under the GNU Lesser General Public License v3 (LGPLv3). See
LICENSE.txt
and COPYING.LESSER
for more information.
Documentation: https://pyplanets.readthedocs.io/en/latest/
GitHub: https://github.com/martin5f/pyplanets
If you have Sphinx installed, you can generate your own, latest documentation going to directory ‘docs’ and issuing:
make html
Then the HTML documentation pages can be found in ‘build/html’.
The preferred method to contribute is through forking and pull requests:
- Fork it (https://github.com/martin5f/pyplanets/fork)
- Create your feature branch (
git checkout -b feature/fooBar
) - Commit your changes (
git commit -am 'Add some fooBar'
) - Push to the branch (
git push origin feature/fooBar
) - Create a new Pull Request
Please bear in mind that PyPlanets follows the PEP8 style guide for Python code (PEP8). We suggest you install and use a linter like Flake8 before contributing.
Additionally, PyPlanets makes heavy use of automatic tests. As a general
rule, every function or method added must have a corresponding test in
the proper place in tests
directory.
Finally, documentation is also a big thing here. Add proper and abundant documentation to your new code. This also includes in-line comments!!!.
- 0.4.2
- Initial refactoring completed, basic release and documentation workflow established.
- 0.0.1 - 0.3.6 (pymeeus - previous releases)