Skip to content

mas-tono/Page-View-Time-Series-Visualizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Page-View-Time-Series-Visualizer

certification python project from freecodecamp

  1. using Python to visualize time series data using a line chart, bar chart, and box plots.

  2. the data visualizations will help us understand the patterns in visits and identify yearly and monthly growth of page views each day on the freeCodeCamp.org forum from 2016-05-09 to 2019-12-03.

  3. import libaries

    library
     import matplotlib.pyplot as plt
     import pandas as pd
     import seaborn as sns
     from pandas.plotting import register_matplotlib_converters
     register_matplotlib_converters()
     
  4. Import data (Make sure to parse dates. Consider setting index column to 'date')

    import data
     df = pd.read_csv("fcc-forum-pageviews.csv", index_col="date", parse_dates=["date"])
     
  5. clean the data by filtering out days when the page views were in the top 2.5% of the dataset or bottom 2.5% of the dataset

    clean data
     df = df[(df["value"] >= df["value"].quantile(0.025)) & (df["value"] <= df["value"].quantile(0.975))]
     
  6. create a draw_line_plot function that uses Matplotlib to draw a line chart. The title should be Daily freeCodeCamp Forum Page Views 5/2016-12/2019. The label on the x axis should be Date and the label on the y axis should be Page Views

    draw_line_plot
     def draw_line_plot():
         - draw line plot
         fig, ax = plt.subplots(figsize=(12,6))
         ax.plot(df.index, df["value"], color="red", linewidth=1)
         ax.set_xlabel("Date")
         ax.set_ylabel("Page Views")
         ax.set_title("Daily freeCodeCamp Forum Page Views 5/2016-12/2019")
     
    - save image and return fig fig.savefig('line_plot.png') return fig
    line plot
  7. create a draw_bar_plot function that draws a bar chart. It should show average daily page views for each month grouped by year. The legend should show month labels and have a title of Months. On the chart, the label on the x axis should be Years and the label on the y axis should be Average Page Views

    draw_bar_plot
     def draw_bar_plot():
         - copy and modify data for monthly bar plot
         df_bar = df.copy(deep=True)
         df_bar["Months"] = df_bar.index.month
         df_bar["tahun"] = df_bar.index.year
         df_bar["bulan_angka"] = df_bar.index.month
         df_bar = pd.DataFrame(df_bar.groupby(["tahun", "Months", "bulan_angka"])["value"].mean())
         df_bar.reset_index(inplace=True)
    • draw bar plot
      fig, ax = plt.subplots(figsize = (14,10)) ax = sns.barplot(data = df_bar, x = "tahun", y = "value", hue = "Months", hue_order=['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'], palette = "bright") sns.move_legend(ax, "upper left") ax.set_xlabel("Years") ax.set_ylabel("Average Page Views")
    • save image and return fig fig.savefig('bar_plot.png') return fig
    bar plot
  8. create a draw_box_plot function that uses Seaborn to draw two adjacent box plots. These box plots should show how the values are distributed within a given year or month and how it compares over time. The title of the first chart should be Year-wise Box Plot (Trend) and the title of the second chart should be Month-wise Box Plot (Seasonality). Make sure the month labels on bottom start at Jan and the x and y axis are labeled correctly

    draw_box_plot
     def draw_box_plot():
         df_box = df.copy(deep=True)
         df_box.reset_index(inplace=True)
         df_box['year'] = [d.year for d in df_box.date]
         df_box['month'] = [d.strftime('%b') for d in df_box.date]
         df_box["month_angka"] = [d.strftime("%m") for d in df_box["date"]]
     
    - draw box plots (using Seaborn) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,6)) p = sns.boxplot(data = df_box, x = "year", y = "value", ax=ax[0]) p.set_title("Year-wise Box Plot (Trend)") p.set_xlabel("Year") p.set_ylabel("Page Views")
    q = sns.boxplot(data = df_box.sort_values(by="month_angka"), x = "month", y = "value", ax=ax[1]) q.set_title("Month-wise Box Plot (Seasonality)") q.set_xlabel("Month") q.set_ylabel("Page Views")
    - save image and return fig fig.savefig('box_plot.png') return fig
    box plot
  9. put them together in time_series_visualizer.py file

  10. call via main.py

Releases

No releases published

Packages

No packages published

Languages