Skip to content

mayahq/xTuring

 
 

Repository files navigation

Stochastic.ai Stochastic.ai

Build, customize and control your own personal LLMs



xTuring provides fast, efficient and simple fine-tuning of LLMs, such as LLaMA, GPT-J, Galactica, and more. By providing an easy-to-use interface for fine-tuning LLMs to your own data and application, xTuring makes it simple to build, customize and control LLMs. The entire process can be done inside your computer or in your private cloud, ensuring data privacy and security.

With xTuring you can,

  • Ingest data from different sources and preprocess them to a format LLMs can understand
  • Scale from single to multiple GPUs for faster fine-tuning
  • Leverage memory-efficient methods (i.e. INT4, LoRA fine-tuning) to reduce hardware costs by up to 90%
  • Explore different fine-tuning methods and benchmark them to find the best performing model
  • Evaluate fine-tuned models on well-defined metrics for in-depth analysis

🌟 What's new?

We are excited to announce the latest enhancements to our xTuring library:

  1. Falcon LLM integration - You can use and fine-tune the Falcon-7B model in different configurations: off-the-shelf, off-the-shelf with INT8 precision, LoRA fine-tuning, and LoRA fine-tuning with INT8 precision.
  2. GenericModel wrapper - This new integration allows you to test and fine-tune any new model on xTuring without waiting for it to be integrated using class GenericModel.

You can check the Falcon LoRA INT8 working example repository to see how it works. Also, you can check the GenericModel working example repository to see how it works.


⚙️ Installation

pip install xturing

🚀 Quickstart

from xturing.datasets import InstructionDataset
from xturing.models import BaseModel

# Load the dataset
instruction_dataset = InstructionDataset("./alpaca_data")

# Initialize the model
model = BaseModel.create("llama_lora")

# Finetune the model
model.finetune(dataset=instruction_dataset)

# Perform inference
output = model.generate(texts=["Why LLM models are becoming so important?"])

print("Generated output by the model: {}".format(output))

You can find the data folder here.


CLI playground

$ xturing chat -m "<path-to-model-folder>"

UI playground

from xturing.datasets import InstructionDataset
from xturing.models import BaseModel
from xturing.ui import Playground

dataset = InstructionDataset("./alpaca_data")
model = BaseModel.create("<model_name>")

model.finetune(dataset=dataset)

model.save("llama_lora_finetuned")

Playground().launch() ## launches localhost UI

📚 Tutorials


📊 Performance

Here is a comparison for the performance of different fine-tuning techniques on the LLaMA 7B model. We use the Alpaca dataset for fine-tuning. The dataset contains 52K instructions.

Hardware:

4xA100 40GB GPU, 335GB CPU RAM

Fine-tuning parameters:

{
  'maximum sequence length': 512,
  'batch size': 1,
}
LLaMA-7B DeepSpeed + CPU Offloading LoRA + DeepSpeed LoRA + DeepSpeed + CPU Offloading
GPU 33.5 GB 23.7 GB 21.9 GB
CPU 190 GB 10.2 GB 14.9 GB
Time/epoch 21 hours 20 mins 20 mins

Contribute to this by submitting your performance results on other GPUs by creating an issue with your hardware specifications, memory consumption and time per epoch.


📎 Fine-tuned model checkpoints

We have already fine-tuned some models that you can use as your base or start playing with. Here is how you would load them:

from xturing.models import BaseModel
model = BaseModel.load("x/distilgpt2_lora_finetuned_alpaca")
model dataset Path
DistilGPT-2 LoRA alpaca x/distilgpt2_lora_finetuned_alpaca
LLaMA LoRA alpaca x/llama_lora_finetuned_alpaca

📈 Roadmap

  • Support for LLaMA, GPT-J, GPT-2, OPT, Cerebras-GPT, Galactica and Bloom models
  • Dataset generation using self-instruction
  • Low-precision LoRA fine-tuning and unsupervised fine-tuning
  • INT8 low-precision fine-tuning support
  • OpenAI, Cohere and AI21 Studio model APIs for dataset generation
  • Added fine-tuned checkpoints for some models to the hub
  • INT4 LLaMA LoRA fine-tuning demo
  • INT4 LLaMA LoRA fine-tuning with INT4 generation
  • Support for a Generic model wrapper
  • Support for Falcon-7B model
  • INT4 low-precision fine-tuning support
  • Evaluation of LLM models
  • INT3, INT2, INT1 low-precision fine-tuning support
  • Support for Stable Diffusion

🤝 Help and Support

If you have any questions, you can create an issue on this repository.

You can also join our Discord server and start a discussion in the #xturing channel.


📝 License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.


🌎 Contributing

As an open source project in a rapidly evolving field, we welcome contributions of all kinds, including new features and better documentation. Please read our contributing guide to learn how you can get involved.

About

Easily build, customize and control your own LLMs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%