Skip to content
This repository was archived by the owner on Jul 12, 2024. It is now read-only.

mbeps/Machine-Learning-Course-Lab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Algorithms & Techniques Lab

Requirements

  • Poetry or Anaconda
  • Python 3.10

Contents

1 - Data Preprocessing

2 - Regression

  • 4 - Simple Linear Regression
  • 5 - Multiple Linear Regression
  • 6 - Polynomial Regression
  • 7 - Support Vector Regression (SVR)
  • 8 - Decision Tree Regression
  • 9 - Random Forest Regression

3 - Classification

  • 14 - Logistic Regression
  • 15 - K-Nearest Neighbors (K-NN)
  • 16 - Support Vector Machine (SVM)
  • 17 - Kernel SVM
  • 18 - Naive Bayes
  • 19 - Decision Tree Classification
  • 20 - Random Forest Classification

4 - Clustering

  • 24 - K-Means Clustering
  • 25 - Hierarchical Clustering

5 - Association Rule Learning

  • 28 - Apriori
  • 29 - Eclat

6 - Reinforcement Learning

  • 32 - Upper Confidence Bound (UCB)
  • 33 - Thompson Sampling

7 - Natural Language Processing

  • 36 - Natural Language Processing

8 - Deep Learning

  • 39 - Artificial Neural Networks (ANN)
  • 40 - Convolutional Neural Networks (CNN)

9 - Dimensionality Reduction

  • 43 - Principal Component Analysis (PCA)
  • 44 - Linear Discriminant Analysis (LDA)
  • 45 - Kernel PCA

10 - Model Selection & Boosting

  • 48 - Model Selection
    • K-Fold Cross Validation
    • Grid Search

Usage (No Anaconda)

Install dependencies and create virtual environment using Poetry:

poetry install

Install new dependencies:

poetry add DEPENDENCIES

Refer to the Poetry documentation for further documentation

About

Machine Learning Algorithms & Techniques Lab

Resources

License

Stars

Watchers

Forks