This project illustrates how deep learning can be used to clone driving behavior to guide Self-Driving cars as part of Project#4 of Udacity Self-Driving Nanodegree. This repository contains necessary files for running Behavioral Cloning Project.
Details about implementation, background and theory is available in the PDF(Project4_behavioral_cloning.pdf) or at the link here (https://medium.com/@madhusudhan.d/guiding-self-driving-car-using-behavioral-cloning-9c24541a425d)
The main implementation steps of this project are the following:
- Used the simulator to collect data of good driving behavior
- Designed, trained and validated a model that predicts a steering angle from image data
- Used the model to drive the vehicle autonomously around the first track without leaving its boundaries in the simulator.
- Summarized the results with a written report
This lab requires:
The lab enviroment can be created with CarND Term1 Starter Kit. Click here for the details.
The following resources can be found in this github repository:
- drive.py
- video.py
- model.py
- model.h5
- Project4_behavioral_cloning.pdf
##Running the model
Usage of drive.py
requires you have saved the trained model as an h5 file, i.e. model.h5
. See the Keras documentation for how to create this file using the following command:
model.save(filepath)
Once the model has been saved, it can be used with drive.py using this command:
python drive.py model.h5
The above command will load the trained model and use the model to make predictions on individual images in real-time and send the predicted angle back to the server via a websocket connection.
Note: There is known local system's setting issue with replacing "," with "." when using drive.py. When this happens it can make predicted steering values clipped to max/min values. If this occurs, a known fix for this is to add "export LANG=en_US.utf8" to the bashrc file.
python drive.py model.h5 run1
The fourth argument, run1
, is the directory in which to save the images seen by the agent. If the directory already exists, it'll be overwritten.
ls run1
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_424.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_451.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_477.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_528.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_573.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_618.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_697.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_723.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_749.jpg
[2017-01-09 16:10:23 EST] 12KiB 2017_01_09_21_10_23_817.jpg
...
The image file name is a timestamp of when the image was seen. This information is used by video.py
to create a chronological video of the agent driving.
python video.py run1
Creates a video based on images found in the run1
directory. The name of the video will be the name of the directory followed by '.mp4'
, so, in this case the video will be run1.mp4
.
Optionally, one can specify the FPS (frames per second) of the video:
python video.py run1 --fps 48
Will run the video at 48 FPS. The default FPS is 60.