This project focuses on developing a computer vision model capable of detecting mild depression based on resting state fMRI scans. It explores different machine learning approaches and preprocessing techniques to address this complex challenge.
mild_depression_detection
├── models
│ ├── mobilenet v2
│ ├── svm
│ ├── random forest
│ ├── xgboost
│ └── monai
├── notebooks
│ ├── mobilenet.ipynb
│ ├── model_cross_validation.py
│ ├── model_single_train.py
│ ├── monai.ipynb
│ └── simple_ml_models.ipynb
│ └── simple_ml_models_v2.ipynb
├── scripts
│ ├── descriptors.py
│ ├── preprocessing.py
│ └── scheduler.py
└── .gitignore