Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions botorch/acquisition/monte_carlo.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ def forward(self, X: Tensor) -> Tensor:
posterior = self.model.posterior(X)
samples = self.sampler(posterior)
obj = self.objective(samples)
obj = (obj - self.best_f).clamp_min(0)
obj = (obj - self.best_f.unsqueeze(-1)).clamp_min(0)
q_ei = obj.max(dim=-1)[0].mean(dim=0)
return q_ei

Expand Down Expand Up @@ -323,7 +323,8 @@ def forward(self, X: Tensor) -> Tensor:
samples = self.sampler(posterior)
obj = self.objective(samples)
max_obj = obj.max(dim=-1)[0]
val = torch.sigmoid((max_obj - self.best_f) / self.tau).mean(dim=0)
impr = max_obj - self.best_f.unsqueeze(-1)
val = torch.sigmoid(impr / self.tau).mean(dim=0)
return val


Expand Down
7 changes: 5 additions & 2 deletions botorch/optim/optimize.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

from __future__ import annotations

from typing import Callable, Dict, List, Optional, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
from botorch.acquisition.acquisition import (
Expand Down Expand Up @@ -42,6 +42,7 @@ def optimize_acqf(
batch_initial_conditions: Optional[Tensor] = None,
return_best_only: bool = True,
sequential: bool = False,
**kwargs: Any,
) -> Tuple[Tensor, Tensor]:
r"""Generate a set of candidates via multi-start optimization.

Expand Down Expand Up @@ -70,6 +71,7 @@ def optimize_acqf(
random restart initializations of the optimization.
sequential: If False, uses joint optimization, otherwise uses sequential
optimization.
kwargs: Additonal keyword arguments.

Returns:
A two-element tuple containing
Expand Down Expand Up @@ -191,7 +193,8 @@ def optimize_acqf(
batch_acq_values = batch_acq_values[best]

if isinstance(acq_function, OneShotAcquisitionFunction):
batch_candidates = acq_function.extract_candidates(X_full=batch_candidates)
if not kwargs.get("return_full_tree", False):
batch_candidates = acq_function.extract_candidates(X_full=batch_candidates)

return batch_candidates, batch_acq_values

Expand Down