Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 10 additions & 32 deletions captum/testing/helpers/classification_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,23 +12,17 @@ class SigmoidModel(nn.Module):
-pytorch-and-make-your-life-simpler-ec5367895199
"""

# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, num_in, num_hidden, num_out) -> None:
def __init__(self, num_in: int, num_hidden: int, num_out: int) -> None:
super().__init__()
# pyre-fixme[4]: Attribute must be annotated.
self.num_in = num_in
# pyre-fixme[4]: Attribute must be annotated.
self.num_hidden = num_hidden
# pyre-fixme[4]: Attribute must be annotated.
self.num_out = num_out
self.lin1 = nn.Linear(num_in, num_hidden)
self.lin2 = nn.Linear(num_hidden, num_out)
self.relu1 = nn.ReLU()
self.sigmoid = nn.Sigmoid()

# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def forward(self, input):
def forward(self, input: torch.Tensor) -> torch.Tensor:
lin1 = self.lin1(input)
lin2 = self.lin2(self.relu1(lin1))
return self.sigmoid(lin2)
Expand All @@ -40,14 +34,12 @@ class SoftmaxModel(nn.Module):
https://adventuresinmachinelearning.com/pytorch-tutorial-deep-learning/
"""

# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, num_in, num_hidden, num_out, inplace: bool = False) -> None:
def __init__(
self, num_in: int, num_hidden: int, num_out: int, inplace: bool = False
) -> None:
super().__init__()
# pyre-fixme[4]: Attribute must be annotated.
self.num_in = num_in
# pyre-fixme[4]: Attribute must be annotated.
self.num_hidden = num_hidden
# pyre-fixme[4]: Attribute must be annotated.
self.num_out = num_out
self.lin1 = nn.Linear(num_in, num_hidden)
self.lin2 = nn.Linear(num_hidden, num_hidden)
Expand All @@ -56,9 +48,7 @@ def __init__(self, num_in, num_hidden, num_out, inplace: bool = False) -> None:
self.relu2 = nn.ReLU(inplace=inplace)
self.softmax = nn.Softmax(dim=1)

# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def forward(self, input):
def forward(self, input: torch.Tensor) -> torch.Tensor:
lin1 = self.relu1(self.lin1(input))
lin2 = self.relu2(self.lin2(lin1))
lin3 = self.lin3(lin2)
Expand All @@ -72,14 +62,10 @@ class SigmoidDeepLiftModel(nn.Module):
-pytorch-and-make-your-life-simpler-ec5367895199
"""

# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, num_in, num_hidden, num_out) -> None:
def __init__(self, num_in: int, num_hidden: int, num_out: int) -> None:
super().__init__()
# pyre-fixme[4]: Attribute must be annotated.
self.num_in = num_in
# pyre-fixme[4]: Attribute must be annotated.
self.num_hidden = num_hidden
# pyre-fixme[4]: Attribute must be annotated.
self.num_out = num_out
self.lin1 = nn.Linear(num_in, num_hidden, bias=False)
self.lin2 = nn.Linear(num_hidden, num_out, bias=False)
Expand All @@ -88,9 +74,7 @@ def __init__(self, num_in, num_hidden, num_out) -> None:
self.relu1 = nn.ReLU()
self.sigmoid = nn.Sigmoid()

# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def forward(self, input):
def forward(self, input: torch.Tensor) -> torch.Tensor:
lin1 = self.lin1(input)
lin2 = self.lin2(self.relu1(lin1))
return self.sigmoid(lin2)
Expand All @@ -102,14 +86,10 @@ class SoftmaxDeepLiftModel(nn.Module):
https://adventuresinmachinelearning.com/pytorch-tutorial-deep-learning/
"""

# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, num_in, num_hidden, num_out) -> None:
def __init__(self, num_in: int, num_hidden: int, num_out: int) -> None:
super().__init__()
# pyre-fixme[4]: Attribute must be annotated.
self.num_in = num_in
# pyre-fixme[4]: Attribute must be annotated.
self.num_hidden = num_hidden
# pyre-fixme[4]: Attribute must be annotated.
self.num_out = num_out
self.lin1 = nn.Linear(num_in, num_hidden)
self.lin2 = nn.Linear(num_hidden, num_hidden)
Expand All @@ -121,9 +101,7 @@ def __init__(self, num_in, num_hidden, num_out) -> None:
self.relu2 = nn.ReLU()
self.softmax = nn.Softmax(dim=1)

# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def forward(self, input):
def forward(self, input: torch.Tensor) -> torch.Tensor:
lin1 = self.relu1(self.lin1(input))
lin2 = self.relu2(self.lin2(lin1))
lin3 = self.lin3(lin2)
Expand Down
Loading