-
Notifications
You must be signed in to change notification settings - Fork 542
Adding Titanic Tutorial #3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Overall looks awesome! Thank you @vivekmig !
Couple comments:
- What do you mean by the comment :
# Linear 0 is simply identity transform
did you meanlinear1
? - Also, I don't see relu-s in the forward function but there are some relu_out1 and relu_out2 variables.
- Sigmoid is a little unusual did you mean Relu ?
- It looks like the printouts for the training are very lengthy. Perhaps we could printout some of the epochs using an interval - after running for, let's say, each xx epochs, similar to CIFAR ?
- nit: "how it reaches it's decision," -> "... its decision" ?
- nit: "requiresgrad" ->
requires_grad_
? - Did you also try to compare with random forest's or the linear model's feature importance ?
- Also, it would be interesting to compare the importances of different layers
Thanks for the feedback!
|
Thank you, Vivek! It looks good for showcasing how to use |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is awesome! Some nits, but approving regardless.
"\n", | ||
"import torch\n", | ||
"\n", | ||
"from captum.attributions.integrated_gradients import IntegratedGradients\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Need to change this to from captum.attr import IntegratedGradients
and same for the rest?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good point, thanks!
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We will begin by importing and cleaning the dataset. Download the dataset from http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.csv and update the cell below with the path to the dataset csv." |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You might be able to use some PyTorch dataset downloading mechanism to do this automatically for the user? Not 100% sure, though.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sounds good, will look into it.
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"With the data loaded, we now preprocess the data by converting some categorical features such as gender, location of embarcation, and passenger class into one-hot encodings (separate feature columns for each class with 0 / 1). We also remove some features that are more difficult to analyze such as name, and fill missing values in age and fare with the average values." |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit: difficult to analyze such as name, and fill missing values
-> difficult to analyze, such as name, and fill missing values
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"After processing the features we now have are:\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit: After processing the features we now have are:
-> After processing the features we have are:
"* Sibsp - Number of Siblings / Spouses Aboard\n", | ||
"* Parch - Number of Parents / Children Aboard\n", | ||
"* Fare - Fare Amount Paid in British Pounds\n", | ||
"* Female - Binary varible indicating whether passenger is female\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit: varible
-> variable
and on the other lines too
} | ||
], | ||
"source": [ | ||
"bin_means, bin_edges, binnumber = stats.binned_statistic(test_features[:,1], attr[:,1], statistic='mean', bins=6)\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
NIt: Doesn't look like you use binnumber
- can it just be _
?
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We can now obtain the conductance values for all the test examples by calling attribute on the Conductance object. Conductance also requires a target index for networks with mutliple outputs, defining the index of the output for which gradients are computed. Similar to feature attributions, we provide target = 1, corresponding to survival. Conductance also utilizes a baseline, but we simply use the default zero baseline as in integrated gradients." |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit - change Conductance
to LayerConductance
here?
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGDCAYAAADtZ0xmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7xdZX3n8c9XIniplksChGusUhU7Ndoj2Fqpw0WwWEOdqlBHU6tl7GitrbbiZdRa6YSxrdqOtkUUouIVtVBtFYii1hE02CAgYhCCRAJELoraouhv/thP6vZ4Tk6e7JPsc46f9+u1Xnut9Txrrd9zdpLzzdrP3jtVhSRJkqRtd49xFyBJkiTNN4ZoSZIkqZMhWpIkSepkiJYkSZI6GaIlSZKkToZoSZIkqZMhWpIkSepkiJY05yS5KMntSXYbdy2zoY3nP5IcOLTv6CQbxljWNkmyLEklWTTuWgBaLQ8adx2SZIiWNKckWQY8FijgSTvoGuMIhN8B/teOvshcCbuzbaGOS9L8ZYiWNNc8E7gYOAtYuWVnkkcnuSnJLkP7fjPJF9v6PZKckuSrSW5N8r4ke7a2LXdTn53ka8DH2/73t3N+M8mnkjxs6Nx7JfmnJN9K8vkkr03yr0PtD0lyQZLbklyd5KkzjOtvgJOmu4uaZL8kH0iyOcl1SV4w1HZWktcObT8uycah7Q1JXtJ+Ft9JsijJQ9sd8DuSXJnkSZPO96YkH0lyZ5JLkjxwhvqHj31zkn9J8u0kn0myb5I3tFcPvpzkEZNqe2mSL7X2M5Pca6j995Jc036O5yXZb6itkjwvyXpgfZJPtabL2rWflmSPJB9uP7fb2/oBQ+e4KMmftzrvTHJ+ksVD7b+a5P+1n9MNSX6n7d8tyV8m+VqSm5P8fZJ7t7bF7Tp3tLo/ncTfp9JPGf/SS5prngmc3ZZjk+wDUFUXM7ibe+RQ398G3tXWXwCcAPwasB9wO/CmSef+NeChwLFt+1+AQ4C9gS+0a27xpna9fRmE+eFAf1/ggnbtvYGTgDcPh/ApfB14C/DqyQ0tgP0TcBmwP3AU8MIkx07uuxUnAccDuwNp5zu/1fcHwNlJHjyp/58BewDXAKd2XOupwCuAxcBdwGcZ/PwWA+cAfz2p/9MZ/MwfCPx8O5YkRwL/u51vKXA98J5Jx54AHA4cWlVHtH0Pr6qfqar3Mvg9diZwMHAQ8O/A/510jt8GnsXgZ7Er8OJ2/YMY/Bn4W2AJsBxY1445rdW6HHgQg+flla3tRcDGdsw+wMsYvHIi6adJVbm4uLjMiQX4VeD7wOK2/WXgj4baXwu8ra3fj0HIPbhtXwUcNdR3aTvXImAZg5Dzc1u59u6tz88Cu7RjHzzp2v/a1p8GfHrS8f8AvGqac18EPIdB6Pom8DDgaGBDaz8c+NqkY14KnNnWzwJeO9T2OGDj0PYG4HeHth8L3ATcY2jfu4FXD53vjKG2Xwe+PE3tW352i4aOfctQ+x8AVw1t/xfgjkm1PXfStb7a1t8K/J+htp9pP/dlbbuAIyfVU8CDtvI8Lgdun/Szf8XQ9v8EPjr0M/7QFOdI+7P1wKF9vwxc19ZfA5y7tTpcXFwW/uKdaElzyUrg/Kr6Rtt+F0N3gNv2kzN4w+GTgS9U1fWt7WDgQ+0l9jsYhOofMLhTuMUNW1aS7JJkVZv+8S0GYQ8Gd1OXMAjfN0x1bLvW4Vuu1a73dAZ3radVVZsZ3CV9zaSmg4H9Jp3vZZNqn8lwffsBN1TVD4f2Xc/gbuoWNw2tf5dBgN1WNw+t//sU25PPNVzb9a2+LXVuef6oqm8Dt06qc/jYn5DkPkn+Icn17Xn8FLB7hqb9MP1YDwS+OsVplwD3AS4dej4+2vYDvI7B3fvzk1yb5JSt1ShpYfKNGpLmhDbf9KnALkm2hJ7dGASih1fVZVX1pSTXA0/gx6dywCBs/W5VfWaKcy9rq8Mvuf82sIJ2R5jBHejbGdyF3AzcDRwAfKX1P3Do2BuAT1bVMdsx1NcB1wKfm3S+66rqkGmO+Q6DULfFVGF9eGw3AgcmucdQkD6IH41lZxv+2R3EoD7a48FbGto0mb0YTH3ZYqZpEi8CHgwcXlU3JVkO/BuD53EmNwCHTbH/Gwz+M/Cwqvr65MaqurNd90VtCs8nkny+qtZswzUlLRDeiZY0V5zA4M7xoQxekl/OYP7ypxnMk97iXQzmPx8BvH9o/98DpyY5GCDJkiQrtnK9+zGYz3srg4D6F1saquoHwAeBV7c7nQ+ZVMOHgZ9P8owk92zLo5I8dKZBVtUdwF8Bfzq0+3PAt9qbA+/d7pL/QpJHtfZ1wK8n2TPJvsALZ7jMJQyC95+22h4H/AY/Od94Z3lekgMyeKPny4D3tv3vAp6VZHl7deEvgEuqasNWznUz8HND2/djEHjvaOd/VUddZwNHJ3lqBm/G3CvJ8vYfj7cAr0+yN0CS/bfMUU/yxCQPShLgWwz+3P6g47qSFgBDtKS5YiWDOcBfq6qbtiwMpj88PT/6iLN3M5gT/PGhaR8AbwTOY/AS+50MPuHj8K1c7+0MphJ8HfhS6z/s+QzuTt8EvKNd9y74zzuRjwdOZHA39SYGb0Tb1s+1fiNDoauF9t9g8B+H6xjcCT2jXZ92/csY3DE/nx+F0ClV1fcYfDzgE9q53gw8s6q+vI31zbZ3Maj72ra8ttW5hsHH/n0A2MTgjYcnznCuVwOr2zSLpwJvAO7NYJwXM5h2sU2q6msM5mi/CLiNwX9WHt6aX8JgysbFbZrIhQzueMPgzagXAt9m8KbKN1fVRdt6XUkLQ6p8Q7EkzSTJacC+VbVyxs76Txl8ocxzqurCcdciSbPJO9GSNIUMPgf6FzNwGPBs4EPjrkuSNDf4xkJJmtr9GEzh2A+4hcE85nPHWpEkac5wOockSZLUyekckiRJUidDtCRJktRpXs6JXrx4cS1btmzcZUiSJGkBu/TSS79RVUumapuXIXrZsmWsXbt23GVIkiRpAWvfkjslp3NIkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1WjTuAqTZsOyUj4y7hG2yYdXx4y5BkiTNAu9ES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUadG4C5AkSdL4LDvlI+MuYUYbVh0/7hJ+gneiJUmSpE6GaEmSJKmT0zmkOciX1iRJmtu8Ey1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJNxZK0k8x38QqSdvHO9GSJElSp1kJ0UmOS3J1kmuSnDJF+25J3tvaL0mybKjtpW3/1UmOnY16JEmSpB1p5BCdZBfgTcATgEOBk5IcOqnbs4Hbq+pBwOuB09qxhwInAg8DjgPe3M4nSZIkzVmzcSf6MOCaqrq2qr4HvAdYManPCmB1Wz8HOCpJ2v73VNVdVXUdcE07nyRJkjRnzcYbC/cHbhja3ggcPl2fqro7yTeBvdr+iycdu/9UF0lyMnAywEEHHTQLZfebD2/AgW1/E858GM+2jmWhvfFooY1nIf1ZW0hj6e2rnWuh/VlbSONZSGPp7asfmY0QnSn21Tb22ZZjBzurTgdOB5iYmJiyjyRJmpsMalpoZmM6x0bgwKHtA4Abp+uTZBHws8Bt23isJEmSNKfMRoj+PHBIkgck2ZXBGwXPm9TnPGBlW/8t4ONVVW3/ie3TOx4AHAJ8bhZqkiRJknaYkadztDnOzwc+BuwCvK2qrkzyGmBtVZ0HvBV4R5JrGNyBPrEde2WS9wFfAu4GnldVPxi1JkmSJGlHmpVvLKyqfwb+edK+Vw6t/wfwlGmOPRU4dTbqkCRJknYGv7FQkiRJ6mSIliRJkjoZoiVJkqROhmhJkiSpkyFakiRJ6mSIliRJkjoZoiVJkqROhmhJkiSpkyFakiRJ6mSIliRJkjoZoiVJkqROhmhJkiSp06JxFyBp4duw6vhxlyBJ0qzyTrQkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUadG4C9D4bFh1/LhLkCRJmpe8Ey1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnUYK0Un2THJBkvXtcY9p+q1sfdYnWTm0/6IkVydZ15a9R6lHkiRJ2hlGvRN9CrCmqg4B1rTtH5NkT+BVwOHAYcCrJoXtp1fV8rbcMmI9kiRJ0g43aoheAaxu66uBE6bocyxwQVXdVlW3AxcAx414XUmSJGlsRg3R+1TVJoD2ONV0jP2BG4a2N7Z9W5zZpnL8rySZ7kJJTk6yNsnazZs3j1i2JEmStP1m/NrvJBcC+07R9PJtvMZUwbja49Or6utJ7gd8AH |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit - neuron attributions
to Neuron Attributions
?
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGDCAYAAADtZ0xmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7xdZX3n8c9XIniplksChGusUhU7Ndoj2Fqpw0WwWEOdqlBHU6tl7GitrbbiZdRa6YSxrdqOtkUUouIVtVBtFYii1hE02CAgYhCCRAJELoraouhv/thP6vZ4Tk6e7JPsc46f9+u1Xnut9Txrrd9zdpLzzdrP3jtVhSRJkqRtd49xFyBJkiTNN4ZoSZIkqZMhWpIkSepkiJYkSZI6GaIlSZKkToZoSZIkqZMhWpIkSepkiJY05yS5KMntSXYbdy2zoY3nP5IcOLTv6CQbxljWNkmyLEklWTTuWgBaLQ8adx2SZIiWNKckWQY8FijgSTvoGuMIhN8B/teOvshcCbuzbaGOS9L8ZYiWNNc8E7gYOAtYuWVnkkcnuSnJLkP7fjPJF9v6PZKckuSrSW5N8r4ke7a2LXdTn53ka8DH2/73t3N+M8mnkjxs6Nx7JfmnJN9K8vkkr03yr0PtD0lyQZLbklyd5KkzjOtvgJOmu4uaZL8kH0iyOcl1SV4w1HZWktcObT8uycah7Q1JXtJ+Ft9JsijJQ9sd8DuSXJnkSZPO96YkH0lyZ5JLkjxwhvqHj31zkn9J8u0kn0myb5I3tFcPvpzkEZNqe2mSL7X2M5Pca6j995Jc036O5yXZb6itkjwvyXpgfZJPtabL2rWflmSPJB9uP7fb2/oBQ+e4KMmftzrvTHJ+ksVD7b+a5P+1n9MNSX6n7d8tyV8m+VqSm5P8fZJ7t7bF7Tp3tLo/ncTfp9JPGf/SS5prngmc3ZZjk+wDUFUXM7ibe+RQ398G3tXWXwCcAPwasB9wO/CmSef+NeChwLFt+1+AQ4C9gS+0a27xpna9fRmE+eFAf1/ggnbtvYGTgDcPh/ApfB14C/DqyQ0tgP0TcBmwP3AU8MIkx07uuxUnAccDuwNp5zu/1fcHwNlJHjyp/58BewDXAKd2XOupwCuAxcBdwGcZ/PwWA+cAfz2p/9MZ/MwfCPx8O5YkRwL/u51vKXA98J5Jx54AHA4cWlVHtH0Pr6qfqar3Mvg9diZwMHAQ8O/A/510jt8GnsXgZ7Er8OJ2/YMY/Bn4W2AJsBxY1445rdW6HHgQg+flla3tRcDGdsw+wMsYvHIi6adJVbm4uLjMiQX4VeD7wOK2/WXgj4baXwu8ra3fj0HIPbhtXwUcNdR3aTvXImAZg5Dzc1u59u6tz88Cu7RjHzzp2v/a1p8GfHrS8f8AvGqac18EPIdB6Pom8DDgaGBDaz8c+NqkY14KnNnWzwJeO9T2OGDj0PYG4HeHth8L3ATcY2jfu4FXD53vjKG2Xwe+PE3tW352i4aOfctQ+x8AVw1t/xfgjkm1PXfStb7a1t8K/J+htp9pP/dlbbuAIyfVU8CDtvI8Lgdun/Szf8XQ9v8EPjr0M/7QFOdI+7P1wKF9vwxc19ZfA5y7tTpcXFwW/uKdaElzyUrg/Kr6Rtt+F0N3gNv2kzN4w+GTgS9U1fWt7WDgQ+0l9jsYhOofMLhTuMUNW1aS7JJkVZv+8S0GYQ8Gd1OXMAjfN0x1bLvW4Vuu1a73dAZ3radVVZsZ3CV9zaSmg4H9Jp3vZZNqn8lwffsBN1TVD4f2Xc/gbuoWNw2tf5dBgN1WNw+t//sU25PPNVzb9a2+LXVuef6oqm8Dt06qc/jYn5DkPkn+Icn17Xn8FLB7hqb9MP1YDwS+OsVplwD3AS4dej4+2vYDvI7B3fvzk1yb5JSt1ShpYfKNGpLmhDbf9KnALkm2hJ7dGASih1fVZVX1pSTXA0/gx6dywCBs/W5VfWaKcy9rq8Mvuf82sIJ2R5jBHejbGdyF3AzcDRwAfKX1P3Do2BuAT1bVMdsx1NcB1wKfm3S+66rqkGmO+Q6DULfFVGF9eGw3AgcmucdQkD6IH41lZxv+2R3EoD7a48FbGto0mb0YTH3ZYqZpEi8CHgwcXlU3JVkO/BuD53EmNwCHTbH/Gwz+M/Cwqvr65MaqurNd90VtCs8nkny+qtZswzUlLRDeiZY0V5zA4M7xoQxekl/OYP7ypxnMk97iXQzmPx8BvH9o/98DpyY5GCDJkiQrtnK9+zGYz3srg4D6F1saquoHwAeBV7c7nQ+ZVMOHgZ9P8owk92zLo5I8dKZBVtUdwF8Bfzq0+3PAt9qbA+/d7pL/QpJHtfZ1wK8n2TPJvsALZ7jMJQyC95+22h4H/AY/Od94Z3lekgMyeKPny4D3tv3vAp6VZHl7deEvgEuqasNWznUz8HND2/djEHjvaOd/VUddZwNHJ3lqBm/G3CvJ8vYfj7cAr0+yN0CS/bfMUU/yxCQPShLgWwz+3P6g47qSFgBDtKS5YiWDOcBfq6qbtiwMpj88PT/6iLN3M5gT/PGhaR8AbwTOY/AS+50MPuHj8K1c7+0MphJ8HfhS6z/s+QzuTt8EvKNd9y74zzuRjwdOZHA39SYGb0Tb1s+1fiNDoauF9t9g8B+H6xjcCT2jXZ92/csY3DE/nx+F0ClV1fcYfDzgE9q53gw8s6q+vI31zbZ3Maj72ra8ttW5hsHH/n0A2MTgjYcnznCuVwOr2zSLpwJvAO7NYJwXM5h2sU2q6msM5mi/CLiNwX9WHt6aX8JgysbFbZrIhQzueMPgzagXAt9m8KbKN1fVRdt6XUkLQ6p8Q7EkzSTJacC+VbVyxs76Txl8ocxzqurCcdciSbPJO9GSNIUMPgf6FzNwGPBs4EPjrkuSNDf4xkJJmtr9GEzh2A+4hcE85nPHWpEkac5wOockSZLUyekckiRJUidDtCRJktRpXs6JXrx4cS1btmzcZUiSJGkBu/TSS79RVUumapuXIXrZsmWsXbt23GVIkiRpAWvfkjslp3NIkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1WjTuAqTZsOyUj4y7hG2yYdXx4y5BkiTNAu9ES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUadG4C5AkSdL4LDvlI+MuYUYbVh0/7hJ+gneiJUmSpE6GaEmSJKmT0zmkOciX1iRJmtu8Ey1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJNxZK0k8x38QqSdvHO9GSJElSp1kJ0UmOS3J1kmuSnDJF+25J3tvaL0mybKjtpW3/1UmOnY16JEmSpB1p5BCdZBfgTcATgEOBk5IcOqnbs4Hbq+pBwOuB09qxhwInAg8DjgPe3M4nSZIkzVmzcSf6MOCaqrq2qr4HvAdYManPCmB1Wz8HOCpJ2v73VNVdVXUdcE07nyRJkjRnzcYbC/cHbhja3ggcPl2fqro7yTeBvdr+iycdu/9UF0lyMnAywEEHHTQLZfebD2/AgW1/E858GM+2jmWhvfFooY1nIf1ZW0hj6e2rnWuh/VlbSONZSGPp7asfmY0QnSn21Tb22ZZjBzurTgdOB5iYmJiyjyRJmpsMalpoZmM6x0bgwKHtA4Abp+uTZBHws8Bt23isJEmSNKfMRoj+PHBIkgck2ZXBGwXPm9TnPGBlW/8t4ONVVW3/ie3TOx4AHAJ8bhZqkiRJknaYkadztDnOzwc+BuwCvK2qrkzyGmBtVZ0HvBV4R5JrGNyBPrEde2WS9wFfAu4GnldVPxi1JkmSJGlHmpVvLKyqfwb+edK+Vw6t/wfwlGmOPRU4dTbqkCRJknYGv7FQkiRJ6mSIliRJkjoZoiVJkqROhmhJkiSpkyFakiRJ6mSIliRJkjoZoiVJkqROhmhJkiSpkyFakiRJ6mSIliRJkjoZoiVJkqROhmhJkiSp06JxFyBp4duw6vhxlyBJ0qzyTrQkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUadG4C9D4bFh1/LhLkCRJmpe8Ey1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnUYK0Un2THJBkvXtcY9p+q1sfdYnWTm0/6IkVydZ15a9R6lHkiRJ2hlGvRN9CrCmqg4B1rTtH5NkT+BVwOHAYcCrJoXtp1fV8rbcMmI9kiRJ0g43aoheAaxu66uBE6bocyxwQVXdVlW3AxcAx414XUmSJGlsRg3R+1TVJoD2ONV0jP2BG4a2N7Z9W5zZpnL8rySZ7kJJTk6yNsnazZs3j1i2JEmStP1m/NrvJBcC+07R9PJtvMZUwbja49Or6utJ7gd8AH |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit - Conductance
to LayerConductance
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGDCAYAAADtZ0xmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7xdZX3n8c9XIniplksChGusUhU7Ndoj2Fqpw0WwWEOdqlBHU6tl7GitrbbiZdRa6YSxrdqOtkUUouIVtVBtFYii1hE02CAgYhCCRAJELoraouhv/thP6vZ4Tk6e7JPsc46f9+u1Xnut9Txrrd9zdpLzzdrP3jtVhSRJkqRtd49xFyBJkiTNN4ZoSZIkqZMhWpIkSepkiJYkSZI6GaIlSZKkToZoSZIkqZMhWpIkSepkiJY05yS5KMntSXYbdy2zoY3nP5IcOLTv6CQbxljWNkmyLEklWTTuWgBaLQ8adx2SZIiWNKckWQY8FijgSTvoGuMIhN8B/teOvshcCbuzbaGOS9L8ZYiWNNc8E7gYOAtYuWVnkkcnuSnJLkP7fjPJF9v6PZKckuSrSW5N8r4ke7a2LXdTn53ka8DH2/73t3N+M8mnkjxs6Nx7JfmnJN9K8vkkr03yr0PtD0lyQZLbklyd5KkzjOtvgJOmu4uaZL8kH0iyOcl1SV4w1HZWktcObT8uycah7Q1JXtJ+Ft9JsijJQ9sd8DuSXJnkSZPO96YkH0lyZ5JLkjxwhvqHj31zkn9J8u0kn0myb5I3tFcPvpzkEZNqe2mSL7X2M5Pca6j995Jc036O5yXZb6itkjwvyXpgfZJPtabL2rWflmSPJB9uP7fb2/oBQ+e4KMmftzrvTHJ+ksVD7b+a5P+1n9MNSX6n7d8tyV8m+VqSm5P8fZJ7t7bF7Tp3tLo/ncTfp9JPGf/SS5prngmc3ZZjk+wDUFUXM7ibe+RQ398G3tXWXwCcAPwasB9wO/CmSef+NeChwLFt+1+AQ4C9gS+0a27xpna9fRmE+eFAf1/ggnbtvYGTgDcPh/ApfB14C/DqyQ0tgP0TcBmwP3AU8MIkx07uuxUnAccDuwNp5zu/1fcHwNlJHjyp/58BewDXAKd2XOupwCuAxcBdwGcZ/PwWA+cAfz2p/9MZ/MwfCPx8O5YkRwL/u51vKXA98J5Jx54AHA4cWlVHtH0Pr6qfqar3Mvg9diZwMHAQ8O/A/510jt8GnsXgZ7Er8OJ2/YMY/Bn4W2AJsBxY1445rdW6HHgQg+flla3tRcDGdsw+wMsYvHIi6adJVbm4uLjMiQX4VeD7wOK2/WXgj4baXwu8ra3fj0HIPbhtXwUcNdR3aTvXImAZg5Dzc1u59u6tz88Cu7RjHzzp2v/a1p8GfHrS8f8AvGqac18EPIdB6Pom8DDgaGBDaz8c+NqkY14KnNnWzwJeO9T2OGDj0PYG4HeHth8L3ATcY2jfu4FXD53vjKG2Xwe+PE3tW352i4aOfctQ+x8AVw1t/xfgjkm1PXfStb7a1t8K/J+htp9pP/dlbbuAIyfVU8CDtvI8Lgdun/Szf8XQ9v8EPjr0M/7QFOdI+7P1wKF9vwxc19ZfA5y7tTpcXFwW/uKdaElzyUrg/Kr6Rtt+F0N3gNv2kzN4w+GTgS9U1fWt7WDgQ+0l9jsYhOofMLhTuMUNW1aS7JJkVZv+8S0GYQ8Gd1OXMAjfN0x1bLvW4Vuu1a73dAZ3radVVZsZ3CV9zaSmg4H9Jp3vZZNqn8lwffsBN1TVD4f2Xc/gbuoWNw2tf5dBgN1WNw+t//sU25PPNVzb9a2+LXVuef6oqm8Dt06qc/jYn5DkPkn+Icn17Xn8FLB7hqb9MP1YDwS+OsVplwD3AS4dej4+2vYDvI7B3fvzk1yb5JSt1ShpYfKNGpLmhDbf9KnALkm2hJ7dGASih1fVZVX1pSTXA0/gx6dywCBs/W5VfWaKcy9rq8Mvuf82sIJ2R5jBHejbGdyF3AzcDRwAfKX1P3Do2BuAT1bVMdsx1NcB1wKfm3S+66rqkGmO+Q6DULfFVGF9eGw3AgcmucdQkD6IH41lZxv+2R3EoD7a48FbGto0mb0YTH3ZYqZpEi8CHgwcXlU3JVkO/BuD53EmNwCHTbH/Gwz+M/Cwqvr65MaqurNd90VtCs8nkny+qtZswzUlLRDeiZY0V5zA4M7xoQxekl/OYP7ypxnMk97iXQzmPx8BvH9o/98DpyY5GCDJkiQrtnK9+zGYz3srg4D6F1saquoHwAeBV7c7nQ+ZVMOHgZ9P8owk92zLo5I8dKZBVtUdwF8Bfzq0+3PAt9qbA+/d7pL/QpJHtfZ1wK8n2TPJvsALZ7jMJQyC95+22h4H/AY/Od94Z3lekgMyeKPny4D3tv3vAp6VZHl7deEvgEuqasNWznUz8HND2/djEHjvaOd/VUddZwNHJ3lqBm/G3CvJ8vYfj7cAr0+yN0CS/bfMUU/yxCQPShLgWwz+3P6g47qSFgBDtKS5YiWDOcBfq6qbtiwMpj88PT/6iLN3M5gT/PGhaR8AbwTOY/AS+50MPuHj8K1c7+0MphJ8HfhS6z/s+QzuTt8EvKNd9y74zzuRjwdOZHA39SYGb0Tb1s+1fiNDoauF9t9g8B+H6xjcCT2jXZ92/csY3DE/nx+F0ClV1fcYfDzgE9q53gw8s6q+vI31zbZ3Maj72ra8ttW5hsHH/n0A2MTgjYcnznCuVwOr2zSLpwJvAO7NYJwXM5h2sU2q6msM5mi/CLiNwX9WHt6aX8JgysbFbZrIhQzueMPgzagXAt9m8KbKN1fVRdt6XUkLQ6p8Q7EkzSTJacC+VbVyxs76Txl8ocxzqurCcdciSbPJO9GSNIUMPgf6FzNwGPBs4EPjrkuSNDf4xkJJmtr9GEzh2A+4hcE85nPHWpEkac5wOockSZLUyekckiRJUidDtCRJktRpXs6JXrx4cS1btmzcZUiSJGkBu/TSS79RVUumapuXIXrZsmWsXbt23GVIkiRpAWvfkjslp3NIkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1WjTuAqTZsOyUj4y7hG2yYdXx4y5BkiTNAu9ES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUadG4C5AkSdL4LDvlI+MuYUYbVh0/7hJ+gneiJUmSpE6GaEmSJKmT0zmkOciX1iRJmtu8Ey1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJNxZK0k8x38QqSdvHO9GSJElSp1kJ0UmOS3J1kmuSnDJF+25J3tvaL0mybKjtpW3/1UmOnY16JEmSpB1p5BCdZBfgTcATgEOBk5IcOqnbs4Hbq+pBwOuB09qxhwInAg8DjgPe3M4nSZIkzVmzcSf6MOCaqrq2qr4HvAdYManPCmB1Wz8HOCpJ2v73VNVdVXUdcE07nyRJkjRnzcYbC/cHbhja3ggcPl2fqro7yTeBvdr+iycdu/9UF0lyMnAywEEHHTQLZfebD2/AgW1/E858GM+2jmWhvfFooY1nIf1ZW0hj6e2rnWuh/VlbSONZSGPp7asfmY0QnSn21Tb22ZZjBzurTgdOB5iYmJiyjyRJmpsMalpoZmM6x0bgwKHtA4Abp+uTZBHws8Bt23isJEmSNKfMRoj+PHBIkgck2ZXBGwXPm9TnPGBlW/8t4ONVVW3/ie3TOx4AHAJ8bhZqkiRJknaYkadztDnOzwc+BuwCvK2qrkzyGmBtVZ0HvBV4R5JrGNyBPrEde2WS9wFfAu4GnldVPxi1JkmSJGlHmpVvLKyqfwb+edK+Vw6t/wfwlGmOPRU4dTbqkCRJknYGv7FQkiRJ6mSIliRJkjoZoiVJkqROhmhJkiSpkyFakiRJ6mSIliRJkjoZoiVJkqROhmhJkiSpkyFakiRJ6mSIliRJkjoZoiVJkqROhmhJkiSp06JxFyBp4duw6vhxlyBJ0qzyTrQkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUyRAtSZIkdTJES5IkSZ0M0ZIkSVInQ7QkSZLUadG4C9D4bFh1/LhLkCRJmpe8Ey1JkiR1MkRLkiRJnQzRkiRJUidDtCRJktTJEC1JkiR1MkRLkiRJnUYK0Un2THJBkvXtcY9p+q1sfdYnWTm0/6IkVydZ15a9R6lHkiRJ2hlGvRN9CrCmqg4B1rTtH5NkT+BVwOHAYcCrJoXtp1fV8rbcMmI9kiRJ0g43aoheAaxu66uBE6bocyxwQVXdVlW3AxcAx414XUmSJGlsRg3R+1TVJoD2ONV0jP2BG4a2N7Z9W5zZpnL8rySZ7kJJTk6yNsnazZs3j1i2JEmStP1m/NrvJBcC+07R9PJtvMZUwbja49Or6utJ7gd8AH |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit - substantiallly
-> substantially
Makes sense, thanks @NarineK! Thanks for the review @orionr! Had quite a few typos, thanks for catching them! |
Update base to utilities
Adding tutorial for Captum based on the Titanic survival dataset. This tutorial reviews applying IG, Conductance and Neuron Conductance to a small model, demonstrating the different types of attributions possible using Captum. A few other small changes are included such as renaming Conductance to LayerConductance to make the distinction between LayerConductance and NeuronConductance clear as well as updating the default number of steps in conductance to 50 to match IG.