Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions torchrec/distributed/benchmark/benchmark_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -492,9 +492,9 @@ def fx_script_module(eager_module: torch.nn.Module) -> torch.nn.Module:
def benchmark(
name: str,
model: torch.nn.Module,
warmup_inputs: List[KeyedJaggedTensor],
bench_inputs: List[KeyedJaggedTensor],
prof_inputs: List[KeyedJaggedTensor],
warmup_inputs: Union[List[KeyedJaggedTensor], List[Dict[str, Any]]],
bench_inputs: Union[List[KeyedJaggedTensor], List[Dict[str, Any]]],
prof_inputs: Union[List[KeyedJaggedTensor], List[Dict[str, Any]]],
world_size: int,
output_dir: str,
num_benchmarks: int,
Expand Down
123 changes: 68 additions & 55 deletions torchrec/sparse/tests/jagged_tensor_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ def bench(
run_backward: bool,
fn: Callable[..., List[torch.Tensor]],
fn_kwargs: Dict[str, Any],
output_dir: str = "",
) -> None:

# initial call
Expand All @@ -49,8 +50,8 @@ def wrapped_func(
model: torch.nn.Module, # not used
bench_inputs: List[KeyedJaggedTensor], # not used
fn: Callable[..., List[torch.Tensor]],
fn_kwargs: Dict[str, Any],
run_backward: bool,
**kwargs: Dict[str, Any],
) -> None:
result = fn(**fn_kwargs)
if run_backward:
Expand All @@ -64,26 +65,27 @@ def wrapped_func(
loss = torch.nn.functional.l1_loss(pred, labels)
loss.sum().backward()

model = DummyModel()
setattr(model, "forward", lambda kwargs: fn(**kwargs))
if device_type == "cuda":
result = benchmark(
name=name,
model=DummyModel(),
warmup_inputs=[],
model=model,
warmup_inputs=[fn_kwargs] * 10,
bench_inputs=[],
prof_inputs=[],
prof_inputs=[fn_kwargs] * 10,
world_size=1,
output_dir="",
output_dir=output_dir,
num_benchmarks=20,
func_to_benchmark=functools.partial(
wrapped_func, fn=fn, run_backward=run_backward, fn_kwargs=fn_kwargs
),
benchmark_func_kwargs={},
rank=0,
enable_logging=False,
enable_logging=True,
)

else: # cpu
model = DummyModel()
times = timeit.repeat(
lambda: wrapped_func(
model=model,
Expand Down Expand Up @@ -160,6 +162,12 @@ def wrapped_func(
default=2,
help="Total num of regrouping",
)
@click.option(
"--profile",
type=str,
default="",
help="profile output directory",
)
def main(
cuda_matrix: bool,
run_backward: bool,
Expand All @@ -170,6 +178,7 @@ def main(
dim_sparse: int,
batch_size: int,
n_groups: int,
profile: str,
) -> None:
if cuda_matrix:
n_denses = [64, 128, 256, 512, 1024]
Expand All @@ -184,54 +193,58 @@ def main(

for device_type in device_types:
for batch_size in batch_sizes:
for n_dense, n_sparse in zip(n_denses, n_sparses):

device = torch.device(device_type)
kts = build_kts(
n_dense,
n_sparse,
dim_dense,
dim_sparse,
batch_size,
device,
run_backward,
)
labels = torch.randint(
0, 1, (batch_size,), device=torch.device(device_type)
).float()
groups = build_groups(kts, n_groups)
bench(
"[fallback] _regroup_keyed_tenors",
labels,
batch_size,
n_dense + n_sparse,
device_type,
run_backward,
_regroup_keyed_tensors,
{"keyed_tensors": kts, "groups": groups},
)
bench(
"[prod] KeyedTensor.regroup",
labels,
batch_size,
n_dense + n_sparse,
device_type,
run_backward,
KeyedTensor.regroup,
{"keyed_tensors": kts, "groups": groups},
)
bench(
"[prod] KTRegroupAsDict",
labels,
batch_size,
n_dense + n_sparse,
device_type,
run_backward,
KTRegroupAsDict(
groups=groups, keys=[str(i) for i in range(n_groups)]
),
{"keyed_tensors": kts},
)
for duplicates in [False, True]:
for n_dense, n_sparse in zip(n_denses, n_sparses):
dup = "_dup" if duplicates else ""
device = torch.device(device_type)
kts = build_kts(
n_dense,
n_sparse,
dim_dense,
dim_sparse,
batch_size,
device,
run_backward,
)
labels = torch.randint(
0, 1, (batch_size,), device=torch.device(device_type)
).float()
groups = build_groups(kts, n_groups, duplicates=duplicates)
bench(
"_regroup_keyed_tenors" + dup,
labels,
batch_size,
n_dense + n_sparse,
device_type,
run_backward,
_regroup_keyed_tensors,
{"keyed_tensors": kts, "groups": groups},
profile,
)
bench(
"KeyedTensor.regroup" + dup,
labels,
batch_size,
n_dense + n_sparse,
device_type,
run_backward,
KeyedTensor.regroup,
{"keyed_tensors": kts, "groups": groups},
profile,
)
bench(
"KTRegroupAsDict" + dup,
labels,
batch_size,
n_dense + n_sparse,
device_type,
run_backward,
KTRegroupAsDict(
groups=groups, keys=[str(i) for i in range(n_groups)]
),
{"keyed_tensors": kts},
profile,
)


if __name__ == "__main__":
Expand Down