Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions distributed/embedding_lookup.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,7 @@ def forward(
assert sparse_features.id_list_features is not None
embeddings: List[torch.Tensor] = []
id_list_features_by_group = sparse_features.id_list_features.split(
self._id_list_feature_splits
self._id_list_feature_splits,
)
for emb_op, features in zip(self._emb_modules, id_list_features_by_group):
embeddings.append(emb_op(features).view(-1))
Expand Down Expand Up @@ -896,15 +896,15 @@ def forward(
if len(self._emb_modules) > 0:
assert sparse_features.id_list_features is not None
id_list_features_by_group = sparse_features.id_list_features.split(
self._id_list_feature_splits
self._id_list_feature_splits,
)
for emb_op, features in zip(self._emb_modules, id_list_features_by_group):
embeddings.append(emb_op(features).values())
if len(self._score_emb_modules) > 0:
assert sparse_features.id_score_list_features is not None
id_score_list_features_by_group = (
sparse_features.id_score_list_features.split(
self._id_score_list_feature_splits
self._id_score_list_feature_splits,
)
)
for emb_op, features in zip(
Expand Down
7 changes: 7 additions & 0 deletions modules/embedding_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import torch
import torch.nn as nn
from torchrec.modules.embedding_configs import (
DataType,
EmbeddingConfig,
EmbeddingBagConfig,
PoolingType,
Expand Down Expand Up @@ -108,12 +109,18 @@ def __init__(
if embedding_config.name in table_names:
raise ValueError(f"Duplicate table name {embedding_config.name}")
table_names.add(embedding_config.name)
dtype = (
torch.float32
if embedding_config.data_type == DataType.FP32
else torch.float16
)
self.embedding_bags[embedding_config.name] = nn.EmbeddingBag(
num_embeddings=embedding_config.num_embeddings,
embedding_dim=embedding_config.embedding_dim,
mode=_to_mode(embedding_config.pooling),
device=device,
include_last_offset=True,
dtype=dtype,
)
if not embedding_config.feature_names:
embedding_config.feature_names = [embedding_config.name]
Expand Down