Machine learning model for 'Software Defect Prediction' using deep learning and based on Python & Tensorflow
-
Datasets
Datasets for this project taken from PROMISE public dataset
-
Models
CNN, RNN, LSTM, Random Forest, and more
-
Results
Results from running model(s) shown in reports folder
│datasets
├── processed
│ └── big_data1.csv
│ └── big_data2.csv
│ └── pc4.csv
│ └── pc3.csv
│ └── ...
├── raw
└── ...
│references
└── README.md
│reports
├── figures
│ └── confussion matrix
│ └── random_forest.png
│ └── cnn.png
│ └── lstm.png
│ └── preprocess_balanced.png
│ └── preprocess_imbalanced.png
├── results
│ └── random_forest.txt
│ └── cnn.txt
│ └── lstm.txt
├── PAPER-Software Defect Prediction.pdf
└── preprocess.txt
└── PAPER-Software Defect Prediction
│src
├── models
│ ├── cnn.py
│ ├── lstm.py
│ ├── random_forest.py
├── main.py
└── preprocess.py
│README.md
│requirements.txt
💻 Windows 10 steps
Clone this repository or download it manual as a zip
$ git clone https://github.com/mhnaufal/Software-Defect-Finale.git
Open up cmd or Powershell (Powershell prefered) as Administrator and go to this repo directory
Create Python virtual environment:
$ python -m venv sddl-env
Run the virtual environment:
$ sddl-env/Scripts/activate
Install the library:
$ pip install -r requirements.txt
If above command result an error, run the cmd or Powershell as Administrator and then re run the above command
Run the models:
$ python src/main.py
or
$ python src/models/random_forest.py
Inspired by many other studies listed in here