-
Notifications
You must be signed in to change notification settings - Fork 323
Closed as not planned
Labels
pytorch-directmlIssues in PyTorch when using its DirectML backendIssues in PyTorch when using its DirectML backend
Description
Problem
in_cpu = torch.rand((1, 32, 512, 512), device='cpu', dtype=torch.float32)
in_dml = torch.tensor(in_cpu, device=torch_directml.device())
out_cpu = F.interpolate(in_cpu, scale_factor=2, mode='bilinear')
out_dml = F.interpolate(in_dml, scale_factor=2, mode='bilinear')
out_cpu
and out_dml
is not the same, and have a great difference:

The problem may relate to operator upsample_bilinear2d
.
Versions
torch 2.0.0
torch-directml 0.2.0.dev230426
torchvision 0.15.1
Metadata
Metadata
Assignees
Labels
pytorch-directmlIssues in PyTorch when using its DirectML backendIssues in PyTorch when using its DirectML backend