Skip to content

Update README.md #62

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Sep 4, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,15 +47,15 @@ This reference architecture shows how to implement continuous integration (CI),

- **Train Model** task executes model training script on Azure ML Compute. It outputs a [model](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#model) file which is stored in the [run history](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#run).

- **Evaluate Model** task evaluates the performance of newly trained model with the model in production. If the new model performs better than the production model, the following steps are executed. If not, they will be skipped.
- **Evaluate Model** task evaluates the performance of the newly trained model with the model in production. If the new model performs better than the production model, the following steps are executed. If not, they will be skipped.

- **Register Model** task takes the improved model and registers it with the [Azure ML Model registry](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#model-registry). This allows us to version control it.

### Deploy Model

Once you have registered your ML model, you can use Azure ML + Azure DevOps to deploy it.

[Azure DevOps release pipeline](https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops) packages the new model along with the scoring file and its python dependencies into a [docker image](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#image) and pushes it to [Azure Container Registry](https://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro). This image is used to deploy the model as [web service](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#web-service) across QA and Prod environments. The QA environment is running on top of [Azure Container Instances (ACI)](https://azure.microsoft.com/en-us/services/container-instances/) and the Prod environemt is built with [Azure Kubernetes Service (AKS)](https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes).
[Azure DevOps release pipeline](https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops) packages the new model along with the scoring file and its python dependencies into a [docker image](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#image) and pushes it to [Azure Container Registry](https://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro). This image is used to deploy the model as [web service](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#web-service) across QA and Prod environments. The QA environment is running on top of [Azure Container Instances (ACI)](https://azure.microsoft.com/en-us/services/container-instances/) and the Prod environment is built with [Azure Kubernetes Service (AKS)](https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes).


### Repo Details
Expand Down