@@ -346,11 +346,11 @@ The secondary side is winding-reduced to the primary, as the equations are writt
346
346
347
347
input AC3ph.Machines.Parameters.Asynchron p
348
348
"parameters asynchronous machine" ;
349
- input Integer n_r "number of rotor circuits" ;
350
349
input Integer scale= 1 "scaling factor topology (Y:1, Delta:3)" ;
351
- output AC3ph.Machines.Coefficients.Asynchron c(n_r= n_r)
350
+ output AC3ph.Machines.Coefficients.Asynchron c(n_r= p. n_r)
352
351
"coefficient matrices asynchronous machine" ;
353
352
protected
353
+ final parameter Integer n_r= p.n_r "number of rotor circuits" ;
354
354
final parameter SI.AngularFrequency omega_nom= 2 * pi* p.f_nom;
355
355
final parameter Real [2 ] RL_base= Basic.Precalculation.baseRL(
356
356
p.puUnits, p.V_nom, p.S_nom, omega_nom, scale)
@@ -425,13 +425,13 @@ See also equivalent circuit on 'Diagram layer' of
425
425
extends PowerSystems.Basic.Icons.Function;
426
426
427
427
input AC3ph.Machines.Parameters.Synchron p "parameters synchronous machine" ;
428
- input Integer n_d "number of rotor circuits d-axis" ;
429
- input Integer n_q "number of rotor circuits q-axis" ;
430
428
input Integer scale= 1 "scaling factor topology (Y:1, Delta:3)" ;
431
- output AC3ph.Machines.Coefficients.Synchron c(n_d= n_d, n_q= n_q)
429
+ output AC3ph.Machines.Coefficients.Synchron c(n_d= p. n_d, n_q= p. n_q)
432
430
"coefficient matrices synchronous machine" ;
433
431
434
432
protected
433
+ final parameter Integer n_d= p.n_d "number of rotor circuits d-axis" ;
434
+ final parameter Integer n_q= p.n_q "number of rotor circuits q-axis" ;
435
435
final parameter SI.AngularFrequency omega_nom= 2 * pi* p.f_nom;
436
436
final parameter Real [2 ] RL_base= Basic.Precalculation.baseRL(
437
437
p.puUnits, p.V_nom, p.S_nom, omega_nom, scale)
@@ -567,7 +567,7 @@ It determines first the root vector <pre> r[k] = -1/T[k], k in 1:n</p> and here
567
567
568
568
algorithm
569
569
if n== 0 then
570
- xtr:= fill (0 , 0 );
570
+ xtr := fill (0 , n );
571
571
elseif n== 1 then
572
572
y[1 ] := - (Tc[1 ] - To[1 ])/ Tc[1 ];
573
573
xtr[1 ] := x/ (1 + y[1 ]);
@@ -622,8 +622,8 @@ It determines first the root vector <pre> r[k] = -1/T[k], k in 1:n</p> and here
622
622
Boolean Treal;
623
623
624
624
algorithm
625
- if n == 0 then
626
- To := fill (0 ,0 );
625
+ if n == 0 then
626
+ To := fill (0 , n );
627
627
else
628
628
y := x./ xtr;
629
629
y := y - cat(1 , {1 }, y[1 :end - 1 ]);
@@ -908,8 +908,8 @@ A different choice is not meaningful, as long as we only have 2 parameters (comp
908
908
algorithm
909
909
xm := cat(1 , zeros (n), {x - xsig_s});
910
910
if n== 0 then
911
- r_r := fill (0 ,0 );
912
- xsig_r := fill (0 ,0 );
911
+ r_r := fill (0 , n );
912
+ xsig_r := fill (0 , n );
913
913
else
914
914
ac := polyCoef(Tc);
915
915
ao := polyCoef(To);
0 commit comments