Skip to content

Using a Deep Q Network to train an agent to collect only yellow bananas leaving the blue ones in a unity ml-agents environment

Notifications You must be signed in to change notification settings

mrdvince/unity_navigation

Repository files navigation

Project: Navigation

Introduction

For this project, you will train an agent to navigate (and collect bananas!) in a large, square world.

Trained Agent

A reward of +1 is provided for collecting a yellow banana, and a reward of -1 is provided for collecting a blue banana. Thus, the goal of your agent is to collect as many yellow bananas as possible while avoiding blue bananas.

The state space has 37 dimensions and contains the agent's velocity, along with ray-based perception of objects around agent's forward direction. Given this information, the agent has to learn how to best select actions. Four discrete actions are available, corresponding to:

  • 0 - move forward.
  • 1 - move backward.
  • 2 - turn left.
  • 3 - turn right.

The task is episodic, and in order to solve the environment, your agent must get an average score of +13 over 100 consecutive episodes.

Getting Started

  1. Download the environment from one of the links below. You need only select the environment that matches your operating system:

    (For Windows users) Check out this link if you need help with determining if your computer is running a 32-bit version or 64-bit version of the Windows operating system.

    (For AWS) If you'd like to train the agent on AWS (and have not enabled a virtual screen), then please use this link to obtain the environment.

  2. Place the file in the DRLND GitHub repository, in the p1_navigation/ folder, and unzip (or decompress) the file.

Instructions

Follow the instructions in Navigation.ipynb to get started with training your own agent!

Files included

  • dqn_agent.py: code for the agent used in the environment
  • model.py: code containing the Q-Network used as the function approximator by the agent
  • dqn.pth: saved model weights for the original DQN model
  • Navigation.ipynb: notebook containing the implemention of the dqn model

Results

The environment was solved in 402 episodes and an Average Score of 13.02.

About

Using a Deep Q Network to train an agent to collect only yellow bananas leaving the blue ones in a unity ml-agents environment

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published