-
-
Notifications
You must be signed in to change notification settings - Fork 41
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TFO: IPv6: the generated cookie is not the expected one #317
Comments
The Packetdrill test I was using:
And the command:
|
Remaining question:
|
note that kmem_cache_create can re-use existing slabs when the arguments matches - in practice tcp_prot and tcpv6_prot should have/use the same slab. so both copying the slab field or calling twice kmem_cache_create should yeld to the same result |
Hi @pabeni , Thank you for your feedback! If I'm not mistaken, for the moment, we have slabs for
Should we then do the same for the subflow requests then? I'm not sure to understand all the consequences (memory / perf) but it might be good to keep them isolated. If yes, do you think it would be OK to change this behaviour in -net? |
Note that kmem_cache_create can still reuse an existing slab even if asked to created a new one with a different name, if overall argments allow for that, see: kmem_cache_create -> kmem_cache_create_usercopy -> __kmem_cache_create -> __kmem_cache_alias the relevant slab name for request socket should be: "request_sock_TCP" "request_sock_TCPv6" see req_prot_init() Note that you can inspect the existing slabs in /proc/slabinfo - if you are using the slub allocator
No, we don't need different slabs for v4/v6 request socket, if the struct size are the same. The slab thing has build-in per-cpu optimization, and that is good enough from resource usage/performance pov |
Thank you for the explanations, it is clearer now, I missed the part about the "merging" bit :-)
OK thank you for this feedback! If merges are done (and no new allocations), should I then keep the code "simple" by keeping |
These tests are similar to the ones for the client side: a first connection is established without DATA in the SYN to request a key, then new connections can send DATA in the SYN with the cookie it previously received. Ideally we would like to validate a second connection in the same test but we are limited by Packetdrill here which cannot understand the new SYN is for a new connection. So this test is split in two parts: - server-TCP_FASTOPEN-cookie-req: the first connection, cookie request - server-TCP_FASTOPEN-cookie-data: the cookie has already been exchanged, data can be sent with the cookie. Note that we can also not use the cookie by setting a sysctl and directly send data, that's what "server-tfo-no-cookie" is doing. Equivalent tests for (plain) TCP are also added. Note that kernel patches are required to get the expected cookie in IPv6, see: multipath-tcp/mptcp_net-next#317 Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
These tests are similar to the ones for the client side: a first connection is established without DATA in the SYN to request a key, then new connections can send DATA in the SYN with the cookie it previously received. Ideally we would like to validate a second connection in the same test but we are limited by Packetdrill here which cannot understand the new SYN is for a new connection. So this test is split in two parts: - server-TCP_FASTOPEN-cookie-req: the first connection, cookie request - server-TCP_FASTOPEN-cookie-data: the cookie has already been exchanged, data can be sent with the cookie. Note that we can also not use the cookie by setting a sysctl and directly send data, that's what "server-tfo-no-cookie" is doing. Equivalent tests for (plain) TCP are also added. Note that kernel patches are required to get the expected cookie in IPv6, see: multipath-tcp/mptcp_net-next#317 Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
This has been fixed thanks to:
(I forgot to add the |
We can see that "bswap32: Takes an unsigned 32-bit number in either big- or little-endian format and returns the equivalent number with the same bit width but opposite endianness" in BPF Instruction Set Specification, so it should clear the upper 32 bits in "case 32:" for both BPF_ALU and BPF_ALU64. [root@linux fedora]# echo 1 > /proc/sys/net/core/bpf_jit_enable [root@linux fedora]# modprobe test_bpf Before: test_bpf: #313 BSWAP 32: 0x0123456789abcdef -> 0xefcdab89 jited:1 ret 1460850314 != -271733879 (0x5712ce8a != 0xefcdab89)FAIL (1 times) test_bpf: #317 BSWAP 32: 0xfedcba9876543210 -> 0x10325476 jited:1 ret -1460850316 != 271733878 (0xa8ed3174 != 0x10325476)FAIL (1 times) After: test_bpf: #313 BSWAP 32: 0x0123456789abcdef -> 0xefcdab89 jited:1 4 PASS test_bpf: #317 BSWAP 32: 0xfedcba9876543210 -> 0x10325476 jited:1 4 PASS Fixes: 4ebf921 ("LoongArch: BPF: Support unconditional bswap instructions") Acked-by: Hengqi Chen <hengqi.chen@gmail.com> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
In case when is64 == 1 in emit(A64_REV32(is64, dst, dst), ctx) the generated insn reverses byte order for both high and low 32-bit words, resuling in an incorrect swap as indicated by the jit test: [ 9757.262607] test_bpf: #312 BSWAP 16: 0x0123456789abcdef -> 0xefcd jited:1 8 PASS [ 9757.264435] test_bpf: #313 BSWAP 32: 0x0123456789abcdef -> 0xefcdab89 jited:1 ret 1460850314 != -271733879 (0x5712ce8a != 0xefcdab89)FAIL (1 times) [ 9757.266260] test_bpf: #314 BSWAP 64: 0x0123456789abcdef -> 0x67452301 jited:1 8 PASS [ 9757.268000] test_bpf: #315 BSWAP 64: 0x0123456789abcdef >> 32 -> 0xefcdab89 jited:1 8 PASS [ 9757.269686] test_bpf: #316 BSWAP 16: 0xfedcba9876543210 -> 0x1032 jited:1 8 PASS [ 9757.271380] test_bpf: #317 BSWAP 32: 0xfedcba9876543210 -> 0x10325476 jited:1 ret -1460850316 != 271733878 (0xa8ed3174 != 0x10325476)FAIL (1 times) [ 9757.273022] test_bpf: #318 BSWAP 64: 0xfedcba9876543210 -> 0x98badcfe jited:1 7 PASS [ 9757.274721] test_bpf: #319 BSWAP 64: 0xfedcba9876543210 >> 32 -> 0x10325476 jited:1 9 PASS Fix this by forcing 32bit variant of rev32. Fixes: 1104247 ("bpf, arm64: Support unconditional bswap") Signed-off-by: Artem Savkov <asavkov@redhat.com> Tested-by: Puranjay Mohan <puranjay12@gmail.com> Acked-by: Puranjay Mohan <puranjay12@gmail.com> Acked-by: Xu Kuohai <xukuohai@huawei.com> Message-ID: <20240321081809.158803-1-asavkov@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recent additions in BPF like cpu v4 instructions, test_bpf module exhibits the following failures: test_bpf: #82 ALU_MOVSX | BPF_B jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #83 ALU_MOVSX | BPF_H jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #84 ALU64_MOVSX | BPF_B jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #85 ALU64_MOVSX | BPF_H jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #86 ALU64_MOVSX | BPF_W jited:1 ret 2 != 1 (0x2 != 0x1)FAIL (1 times) test_bpf: #165 ALU_SDIV_X: -6 / 2 = -3 jited:1 ret 2147483645 != -3 (0x7ffffffd != 0xfffffffd)FAIL (1 times) test_bpf: #166 ALU_SDIV_K: -6 / 2 = -3 jited:1 ret 2147483645 != -3 (0x7ffffffd != 0xfffffffd)FAIL (1 times) test_bpf: #169 ALU_SMOD_X: -7 % 2 = -1 jited:1 ret 1 != -1 (0x1 != 0xffffffff)FAIL (1 times) test_bpf: #170 ALU_SMOD_K: -7 % 2 = -1 jited:1 ret 1 != -1 (0x1 != 0xffffffff)FAIL (1 times) test_bpf: #172 ALU64_SMOD_K: -7 % 2 = -1 jited:1 ret 1 != -1 (0x1 != 0xffffffff)FAIL (1 times) test_bpf: #313 BSWAP 16: 0x0123456789abcdef -> 0xefcd eBPF filter opcode 00d7 (@2) unsupported jited:0 301 PASS test_bpf: #314 BSWAP 32: 0x0123456789abcdef -> 0xefcdab89 eBPF filter opcode 00d7 (@2) unsupported jited:0 555 PASS test_bpf: #315 BSWAP 64: 0x0123456789abcdef -> 0x67452301 eBPF filter opcode 00d7 (@2) unsupported jited:0 268 PASS test_bpf: #316 BSWAP 64: 0x0123456789abcdef >> 32 -> 0xefcdab89 eBPF filter opcode 00d7 (@2) unsupported jited:0 269 PASS test_bpf: #317 BSWAP 16: 0xfedcba9876543210 -> 0x1032 eBPF filter opcode 00d7 (@2) unsupported jited:0 460 PASS test_bpf: #318 BSWAP 32: 0xfedcba9876543210 -> 0x10325476 eBPF filter opcode 00d7 (@2) unsupported jited:0 320 PASS test_bpf: #319 BSWAP 64: 0xfedcba9876543210 -> 0x98badcfe eBPF filter opcode 00d7 (@2) unsupported jited:0 222 PASS test_bpf: #320 BSWAP 64: 0xfedcba9876543210 >> 32 -> 0x10325476 eBPF filter opcode 00d7 (@2) unsupported jited:0 273 PASS test_bpf: #344 BPF_LDX_MEMSX | BPF_B eBPF filter opcode 0091 (@5) unsupported jited:0 432 PASS test_bpf: #345 BPF_LDX_MEMSX | BPF_H eBPF filter opcode 0089 (@5) unsupported jited:0 381 PASS test_bpf: #346 BPF_LDX_MEMSX | BPF_W eBPF filter opcode 0081 (@5) unsupported jited:0 505 PASS test_bpf: #490 JMP32_JA: Unconditional jump: if (true) return 1 eBPF filter opcode 0006 (@1) unsupported jited:0 261 PASS test_bpf: Summary: 1040 PASSED, 10 FAILED, [924/1038 JIT'ed] Fix them by adding missing processing. Fixes: daabb2b ("bpf/tests: add tests for cpuv4 instructions") Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/91de862dda99d170697eb79ffb478678af7e0b27.1709652689.git.christophe.leroy@csgroup.eu
Packetdrill is reporting that the cookie generated by the kernel is not the expected one when testing in IPv6.
After a bit of debugging, I noticed
req->rsk_ops->family
is set toAF_INET
(not6
) because the subflows extends therequest_sock_ops
of TCP v4 (tcp_request_sock_ops
).Validation in progress but here is a ticket to start discussions (and not to forget to talk about that at the next weekly meeting ;) )
The text was updated successfully, but these errors were encountered: