Skip to content
A web based mission control framework.
Branch: master
Clone or download
akhenry and deeptailor Only persist latest mutated model. (#2295)
* Only persist latest mutated model. Fixes #2277

* Updated tests

* Fixed style issues
Latest commit 98c8e19 Feb 23, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
docs [Documentation] Add security guide (#1900) Feb 2, 2018
example [Tables] Address performance issues observed in testathon (#2112) Jul 16, 2018
platform Only persist latest mutated model. (#2295) Feb 22, 2019
src [Plot] Remove x-axis tick ellipses (#2212) Nov 8, 2018
.gitignore Add functionality to allow users to add hideParameters to the url, wh… Aug 17, 2017
.jshintrc Disabled late definition check for functions Jan 19, 2018
.npmignore [Documentation] Edit for style Apr 23, 2017 Should say License instead of Licenses (#2222) Nov 14, 2018
Procfile [readme] fix email address (#2210) Nov 7, 2018
app.js Modified Express startup so that it only binds to loopback by default Jun 8, 2018
bower.json [Licenses] Update copyright year to 2017 Apr 5, 2017
index.html Adapter consolidation & fix incorrect export to window (#2114) Jul 17, 2018
karma.conf.js Update test specs to use Jasmine 3 (#2089) Jun 30, 2018
openmct.js Updated d3 dependency paths Aug 27, 2018
package.json [cleanup] remove npm lodash (#2155) Aug 31, 2018

Open MCT license

Open MCT (Open Mission Control Technologies) is a next-generation mission control framework for visualization of data on desktop and mobile devices. It is developed at NASA's Ames Research Center, and is being used by NASA for data analysis of spacecraft missions, as well as planning and operation of experimental rover systems. As a generalizable and open source framework, Open MCT could be used as the basis for building applications for planning, operation, and analysis of any systems producing telemetry data.

Please visit our Official Site and Getting Started Guide

See Open MCT in Action

Try Open MCT now with our live demo. Demo


A simpler, easier-to-use API has been added to Open MCT. Changes in this API include a move away from a declarative system of JSON configuration files towards an imperative system based on function calls. Developers will be able to extend and build on Open MCT by making direct function calls to a public API. Open MCT is also being refactored to minimize the dependencies that using Open MCT imposes on developers, such as the current requirement to use AngularJS.

We want Open MCT to be as easy to use, install, run, and develop for as possible, and your feedback will help us get there! Feedback can be provided via GitHub issues, or by emailing us at

Building and Running Open MCT Locally

Building and running Open MCT in your local dev environment is very easy. Be sure you have Git and Node.js installed, then follow the directions below. Need additional information? Check out the Getting Started page on our website. (These instructions assume you are installing as a non-root user; developers have reported issues running these steps with root privileges.)

  1. Clone the source code

git clone

  1. Install development dependencies

npm install

  1. Run a local development server

npm start

Open MCT is now running, and can be accessed by pointing a web browser at http://localhost:8080/


Documentation is available on the Open MCT website. The documentation can also be built locally.


The clearest examples for developing Open MCT plugins are in the tutorials provided in our documentation.

For a practical example of a telemetry adapter, see David Hudson's Kerbal Space Program plugin, which allows Kerbal Space Program players to build and use displays for their own missions in Open MCT.

Additional examples are available in the examples hierarchy of this repository; however, be aware that these examples are not fully-documented, so the tutorials will likely serve as a better starting point.

Building the Open MCT Documentation Locally

Open MCT's documentation is generated by an npm-based build. It has additional dependencies that may not be available on every platform and thus is not covered in the standard npm install. Ensure your system has libcairo installed and then run the following commands:

  • npm install
  • npm install canvas nomnoml
  • npm run docs

Documentation will be generated in target/docs.

Deploying Open MCT

Open MCT is built using npm and gulp.

To build Open MCT for deployment:

npm run prepare

This will compile and minify JavaScript sources, as well as copy over assets. The contents of the dist folder will contain a runnable Open MCT instance (e.g. by starting an HTTP server in that directory), including:

  • A main.js file containing Open MCT source code.
  • Various assets in the example and platform directories.
  • An index.html that runs Open MCT in its default configuration.

Additional gulp tasks are defined in the gulpfile.


A bundle is a group of software components (including source code, declared as AMD modules, as well as resources such as images and HTML templates) that is intended to be added or removed as a single unit. A plug-in for Open MCT will be expressed as a bundle; platform components are also expressed as bundles.

A bundle is also just a directory which contains a file bundle.json, which declares its contents.

The file bundles.json (note the plural), at the top level of the repository, is a JSON file containing an array of all bundles (expressed as directory names) to include in a running instance of Open MCT. Adding or removing paths from this list will add or remove bundles from the running application.


Tests are written for Jasmine 1.3 and run by Karma. To run:

npm test

The test suite is configured to load any scripts ending with Spec.js found in the src hierarchy. Full configuration details are found in karma.conf.js. By convention, unit test scripts should be located alongside the units that they test; for example, src/foo/Bar.js would be tested by src/foo/BarSpec.js. (For legacy reasons, some existing tests may be located in separate test folders near the units they test, but the naming convention is otherwise the same.)

Test Reporting

When npm test is run, test results will be written as HTML to target/tests. Code coverage information is written to target/coverage.


Certain terms are used throughout Open MCT with consistent meanings or conventions. Any deviations from the below are issues and should be addressed (either by updating this glossary or changing code to reflect correct usage.) Other developer documentation, particularly in-line documentation, may presume an understanding of these terms.

  • bundle: A bundle is a removable, reusable grouping of software elements. The application is composed of bundles. Plug-ins are bundles. For more information, refer to framework documentation (under platform/framework.)
  • capability: An object which exposes dynamic behavior or non-persistent state associated with a domain object.
  • composition: In the context of a domain object, this refers to the set of other domain objects that compose or are contained by that object. A domain object's composition is the set of domain objects that should appear immediately beneath it in a tree hierarchy. A domain object's composition is described in its model as an array of id's; its composition capability provides a means to retrieve the actual domain object instances associated with these identifiers asynchronously.
  • description: When used as an object property, this refers to the human-readable description of a thing; usually a single sentence or short paragraph. (Most often used in the context of extensions, domain object models, or other similar application-specific objects.)
  • domain object: A meaningful object to the user; a distinct thing in the work support by Open MCT. Anything that appears in the left-hand tree is a domain object.
  • extension: An extension is a unit of functionality exposed to the platform in a declarative fashion by a bundle. For more information, refer to framework documentation (under platform/framework.)
  • id: A string which uniquely identifies a domain object.
  • key: When used as an object property, this refers to the machine-readable identifier for a specific thing in a set of things. (Most often used in the context of extensions or other similar application-specific object sets.)
  • model: The persistent state associated with a domain object. A domain object's model is a JavaScript object which can be converted to JSON without losing information (that is, it contains no methods.)
  • name: When used as an object property, this refers to the human-readable name for a thing. (Most often used in the context of extensions, domain object models, or other similar application-specific objects.)
  • navigation: Refers to the current state of the application with respect to the user's expressed interest in a specific domain object; e.g. when a user clicks on a domain object in the tree, they are navigating to it, and it is thereafter considered the navigated object (until the user makes another such choice.)
  • space: A name used to identify a persistence store. Interactions with persistence will generally involve a space parameter in some form, to distinguish multiple persistence stores from one another (for cases where there are multiple valid persistence locations available.)
You can’t perform that action at this time.