This is a collection of images and scripts to help you run Cassandra in Docker containers. These images are great to provision ephemeral Cassandra topologies for testing and development purpose.
- Currently supported:
- A single Cassandra node
- A client container to run tools such as cqlsh, nodetool, etc.
- A multi-node cluster - running on a single Docker host
- Monitored cluster using OpsCenter
- Lucene query searches - See https://github.com/Stratio/cassandra-lucene-index
If you'd like to help, please get in touch with me, and/or send me pull requests.
- Full text search
- Geospatial search
- Bitemporal search
- Boolean (and, or, not) search
- Near real-time search
- Relevance scoring and sorting
- General top-k queries
- Custom analyzers
- CQL complex types (list, set, map, tuple and UDT)
- CQL user defined functions (UDF)
- Third-party CQL-based drivers compatibility
- Spark compatibility
- Hadoop compatibility
Not yet supported:
- Thrift API
- Legacy compact storage option
- Indexing
counter
columns - Columns with TTL
- Indexing static columns
-
A recent version of Docker - See https://www.docker.com
-
Verify that the docker command works. Try running 'docker ps' for example.
-
Build the cassandra and opscenter images (optional)
./cassandra/build.sh ./opscenter/build.sh
The last step is optional because Docker will automatically pull the images from index.docker.io if you don't already have them. The build process needs an Internet connection, but it is executed only once and then cached on Docker. If you modify the scripts, this is also how you can re-build the images with your changes.
Here's how to start a Cassandra cluster with a single node, and run some CQL on it. These instructions use the docker command directly to demonstrate what's happening behind the scenes.
-
Launch a container running Cassandra called lussandra:
docker run --detach --name lussandra yaranai/lussandra
-
Connect to it using cqlsh
docker run -it --rm --net container:lussandra yaranai/lussandra cqlsh
You should see something like:
[cqlsh 5.0.1 | Cassandra 2.2.0 | CQL spec 3.3.0 | Native protocol v4] Use HELP for help. cqlsh> quit
If not, then try it again in a few seconds - cassandra might still be starting up.
-
Lets try some CQL
Paste the following into your cqlsh prompt to create a test keyspace, and a test table:
CREATE KEYSPACE test_keyspace WITH REPLICATION = {'class': 'SimpleStrategy', 'replication_factor': 1}; USE test_keyspace; CREATE TABLE test_table ( id text, test_value text, PRIMARY KEY (id) ); INSERT INTO test_table (id, test_value) VALUES ('1', 'one'); INSERT INTO test_table (id, test_value) VALUES ('2', 'two'); INSERT INTO test_table (id, test_value) VALUES ('3', 'three'); SELECT * FROM test_table;
If that worked, you should see:
id | test_value ----+------------ 3 | three 2 | two 1 | one (3 rows)
-
Launch three containers (one seed plus two more)
docker run -d --name cass1 yaranai/lussandra start docker run -d --name cass2 --link cass1:seed yaranai/lussandra start seed docker run -d --name cass3 --link cass1:seed yaranai/lussandra start seed
Note: The yaranai/lussandra docker image contains a shell script called
start
that takes an optional seed host. We use--link cass1:seed
to name the cass1 host as our seed host. -
Run
nodetool status
on cass1 to check the cluster status:docker run -it --rm --net container:cass1 yaranai/lussandra nodetool status
-
Create some data on the first container:
Launch
cqlsh
:docker run -it --rm --net container:cass1 yaranai/lussandra cqlsh
Paste this in:
create keyspace demo with replication = {'class':'SimpleStrategy', 'replication_factor':2}; use demo; create table names ( id int primary key, name text ); insert into names (id,name) values (1, 'gibberish'); quit;
-
Connect to the second container, and check if it can see your data:
Start up
cqlsh
(on cass2 this time):docker run -it --rm --net container:cass2 yaranai/lussandra cqlsh
Paste in:
select * from demo.names;
You should see:
cqlsh> select * from demo.names; id | name ----+----------- 1 | gibberish (1 rows)
-
Right, lets dive right in with some shell scripts in the scripts directory to help us:
./scripts/run.sh 10
-
That will start 10 nodes. Lets see what they're called:
./scripts/ips.sh 172.17.0.10 cass6 172.17.0.12 cass4 172.17.0.11 cass5 172.17.0.6 cass10 172.17.0.7 cass9 172.17.0.9 cass7 172.17.0.8 cass8 172.17.0.4 cass2 172.17.0.3 cass3 172.17.0.2 cass1
-
Same, but with the nodetool:
./scripts/nodetool.sh cass1 status Datacenter: datacenter1 ======================= Status=Up/Down |/ State=Normal/Leaving/Joining/Moving -- Address Load Tokens Owns (effective) Host ID Rack UN 172.17.0.11 74.19 KB 256 21.4% dfd44ca5-bf73-4487-bcb2-db882d0a9231 rack1 UN 172.17.0.10 74.21 KB 256 19.6% f479a4e6-55ac-4533-8ce5-d137a93f2cc4 rack1 UN 172.17.0.9 74.34 KB 256 20.4% 0bb389a0-f111-459c-9620-0faccc75cbc0 rack1 UN 172.17.0.8 74.19 KB 256 20.1% 2eb4a4dd-2bbc-46a3-9f64-4e761509307d rack1 UN 172.17.0.12 74.14 KB 256 20.2% a2547289-0c6a-458f-b982-823711c5293e rack1 UN 172.17.0.3 74.19 KB 256 20.3% 3667cc1a-1f63-4cd1-bebc-841f428a0f4d rack1 UN 172.17.0.2 74.24 KB 256 20.3% 2b48c8ac-ad68-48a0-9c41-c8f2fb7f38e6 rack1 UN 172.17.0.7 67.7 KB 256 19.2% e361f6d8-28ef-4cf8-baa1-88c2d1fec094 rack1 UN 172.17.0.6 74.15 KB 256 19.6% 230f13b1-a27b-44e8-9b51-5ebdb1c4cb13 rack1 UN 172.17.0.4 74.18 KB 256 18.8% 6c90cbaa-e5b3-41de-a160-3ecaf59b8856 rack1
-
When you're tired of your cluster, nuke it with:
./scripts/nuke.sh 10
The snitch type and node location information can be configured with environment variables. The datacenter and rack configuration is only valid if using the GossipingPropertyFileSnitch type snitch. For example:
docker run -d --name cass1 -e SNITCH=GossipingPropertyFileSnitch -e DC=SFO -e RACK=RAC3 yaranai/lussandra
This will set the snitch type and set the datacenter to SFO and the rack to RAC3
Any containers linked in the run command will also be added to the seed list. The 3-node cluster example above may also be written as:
docker run -d --name cass1 yaranai/lussandra
docker run -d --name cass2 --link cass1:cass1 yaranai/lussandra
docker run -d --name cass3 --link cass1:cass1 yaranai/lussandra
# and so on...
When starting a container, you can pass the SEEDS, LISTEN_ADDRESS environment variables to override the defaults:
docker run -e SEEDS=a,b,c... -e LISTEN_ADDRESS=10.2.1.4 yaranai/lussandra
Note that listen_address will also be used for broadcast_address
-
Start a Cassandra cluster with 3 nodes:
./scripts/run.sh 3
-
Start the OpsCenter container:
docker run -d --name opscenter lussandra/opscenter
You can also add the
-p 8888:8888
option to bind container's 8888 port to host's 8888 port -
Connect and configure OpsCenter:
- Open a browser and connect to http://replace.me:8888 - replace the host by the result returned by
./scripts/ipof.sh opscenter
. - Click on the "Use Existing Cluster" button and put at least the IP of one node in the cluster in the host text box. The result of
./scripts/ipof.sh cass1
is a good candidate. Click "Save Cluster" button. OpsCenter start gathering data from the cluster but you do not get full-set metrics yet. - You should see a "0 of 3 agents connected" message on the top of the GUI. Click the "Fix" link aside.
- In the popup, click "Enter Credentials" link and fill form with username
opscenter
and passwordopscenter
. Click "Done". - Click "Install on all nodes" and then "Accept Fingerprints". OpsCenter installs agent on cluster'snodes remotly.
- Once done, you should see the "All agents connected" message.
- Open a browser and connect to http://replace.me:8888 - replace the host by the result returned by
We will create the following table to store tweets:
.. code-block:: sql
CREATE KEYSPACE demo
WITH REPLICATION = {'class' : 'SimpleStrategy', 'replication_factor': 1};
USE demo;
CREATE TABLE tweets (
id INT PRIMARY KEY,
user TEXT,
body TEXT,
time TIMESTAMP,
latitude FLOAT,
longitude FLOAT,
lucene TEXT
);
We have created a column called lucene to link the index searches. This column will not store data. Now you can create a custom Lucene index on it with the following statement:
.. code-block:: sql
CREATE CUSTOM INDEX tweets_index ON tweets (lucene)
USING 'com.stratio.cassandra.lucene.Index'
WITH OPTIONS = {
'refresh_seconds' : '1',
'schema' : '{
fields : {
id : {type : "integer"},
user : {type : "string"},
body : {type : "text", analyzer : "english"},
time : {type : "date", pattern : "yyyy/MM/dd", sorted : true},
place : {type : "geo_point", latitude:"latitude", longitude:"longitude"}
}
}'
};
This will index all the columns in the table with the specified types, and it will be refreshed once per second.
Alternatively, you can explicitly refresh all the index shards with an empty search with consistency ALL
:
.. code-block:: sql
CONSISTENCY ALL
SELECT * FROM tweets WHERE lucene = '{refresh:true}';
CONSISTENCY QUORUM
Now, to search for tweets within a certain date range:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"}
}' limit 100;
The same search can be performed forcing an explicit refresh of the involved index shards:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"},
refresh : true
}' limit 100;
Now, to search the top 100 more relevant tweets where body field contains the phrase “big data gives organizations” within the aforementioned date range:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"},
query : {type:"phrase", field:"body", value:"big data gives organizations", slop:1}
}' limit 100;
To refine the search to get only the tweets written by users whose name starts with “a”:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"boolean", must:[
{type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"},
{type:"prefix", field:"user", value:"a"} ] },
query : {type:"phrase", field:"body", value:"big data gives organizations", slop:1}
}' limit 100;
To get the 100 more recent filtered results you can use the sort option:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"boolean", must:[
{type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"},
{type:"prefix", field:"user", value:"a"} ] },
query : {type:"phrase", field:"body", value:"big data gives organizations", slop:1},
sort : {fields: [ {field:"time", reverse:true} ] }
}' limit 100;
The previous search can be restricted to a geographical bounding box:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"boolean", must:[
{type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"},
{type:"prefix", field:"user", value:"a"},
{type:"geo_bbox",
field:"place",
min_latitude:40.225479,
max_latitude:40.560174,
min_longitude:-3.999278,
max_longitude:-3.378550} ] },
query : {type:"phrase", field:"body", value:"big data gives organizations", slop:1},
sort : {fields: [ {field:"time", reverse:true} ] }
}' limit 100;
Alternatively, you can restrict the search to retrieve tweets that are within a specific distance from a geographical position:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"boolean", must:[
{type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"},
{type:"prefix", field:"user", value:"a"},
{type:"geo_distance",
field:"place",
latitude:40.393035,
longitude:-3.732859,
max_distance:"10km",
min_distance:"100m"} ] },
query : {type:"phrase", field:"body", value:"big data gives organizations", slop:1},
sort : {fields: [ {field:"time", reverse:true} ] }
}' limit 100;
Finally, if you want to restrict the search to a certain token range:
.. code-block:: sql
SELECT * FROM tweets WHERE lucene='{
filter : {type:"boolean", must:[
{type:"range", field:"time", lower:"2014/04/25", upper:"2014/05/01"},
{type:"prefix", field:"user", value:"a"} ,
{type:"geo_distance",
field:"place",
latitude:40.393035,
longitude:-3.732859,
max_distance:"10km",
min_distance:"100m"} ] },
query : {type:"phrase", field:"body", value:"big data gives organizations", slop:1]}
}' AND token(id) >= token(0) AND token(id) < token(10000000) limit 100;
This last is the basis for Hadoop, Spark and other MapReduce frameworks support.
Please, refer to the comprehensive Stratio’s Cassandra Lucene Index documentation <doc/src/site/sphinx/documentation.rst>
__.