-
Notifications
You must be signed in to change notification settings - Fork 8
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added function to optimize ensemble parameters #26
Open
tbekolay
wants to merge
1
commit into
master
Choose a base branch
from
ens-utils
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
It does a simple random search over the ensemble parameter space (encoders, gains, biases) to find ones that work well to decode a particular function.
Here are two other snippets from @studywolf for optimizing ensembles to compute certain functions, migrated from nengo/nengo#440 ... before merging, it would be good to compare these approaches to the one in this PR: import numpy as np
import nengo
def get_intercepts_for_function(function, num_samples=500,
threshold=5e-3, eval_range=[-1, 1],
plot_results=False):
# generate random set of initial eval_points, encoders, and intercepts
num_neurons = 10
eval_points = [np.random.random() for ii in range(num_neurons)]
encoders = [np.random.choice([-1,1],1)[0] for ii in range(num_neurons)]
intercepts = [np.random.random()*encoders[ii] for ii in range(num_neurons)]
def build(intercepts, eval_points, values, build_test=False):
m = nengo.Network()
with m:
if values is not None:
# input function returns time signal
input1 = nengo.Node(output=values)
else:
input1 = nengo.Node(lambda t: np.sin(t / 4))
m.ens1 = nengo.Ensemble(num_neurons, 1,
encoders=np.array(encoders)[:,None],
intercepts=intercepts)
ens2 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
output1 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
output2 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
nengo.Connection(input1, m.ens1)
nengo.Connection(input1, ens2)
nengo.Connection(m.ens1, output1, function=fun0,
eval_points=eval_points)
nengo.Connection(ens2, output2, function=fun0)
if build_test == True:
ens3 = nengo.Ensemble(num_neurons, 1)
output3 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
nengo.Connection(input1, ens3)
nengo.Connection(ens3, output3, function=fun0)
m.probe_output3 = nengo.Probe(output3, synapse=.01)
m.probe_input1 = nengo.Probe(input1)
m.probe_output1 = nengo.Probe(output1, synapse=.01)
m.probe_output2 = nengo.Probe(output2)
return m
for ii in range(num_samples):
m = build(intercepts, eval_points, eval_points[-1])
sim = nengo.Simulator(m)
sim.run(.1)
# randomly add some sample between 0 and 1
error = np.abs(sim.data[m.probe_output2][-1] -
sim.data[m.probe_output1][-1])
if error > threshold:
encoders.append(-1)
encoders.append(1)
epsilon = .001
intercepts.append((eval_points[-1] + epsilon)*-1)
intercepts.append(eval_points[-1] - epsilon)
num_neurons += 2
eval_points.append(np.random.random() * \
(eval_range[1] - eval_range[0]) + eval_range[0])
if ii % 100 == 0:
print 'ens1.n_neurons=%i'%num_neurons
print 'num eval_points: ', len(eval_points)
m = build(intercepts, eval_points, values=None, build_test=True)
sim = nengo.Simulator(m)
run_time = 20
sim.run(run_time)
print 'error of trained: ', np.sum(np.abs(sim.data[m.probe_output2] - \
sim.data[m.probe_output1])) / (run_time / .001)
print 'error of control: ', np.sum(np.abs(sim.data[m.probe_output2] - \
sim.data[m.probe_output3])) / (run_time / .001)
if plot_results == True:
import matplotlib.pyplot as plt
plt.plot(sim.trange(), sim.data[m.probe_input1])
plt.plot(sim.trange(), sim.data[m.probe_output1])
plt.plot(sim.trange(), sim.data[m.probe_output2])
plt.plot(sim.trange(), sim.data[m.probe_output3])
plt.legend(['input', 'approx', 'answer', 'control'])
plt.figure()
from nengo.utils.ensemble import tuning_curves as tc
eps, a = tc(m.ens1, sim)
plt.plot(eps, a)
plt.show()
return intercepts, eval_points, encoders, num_neurons
################################################################################
if __name__ == '__main__':
# generate a random target signal to follow
n1 = np.zeros((10000,), dtype=complex)
n2 = np.zeros((10000,), dtype=complex)
n1[:5] = np.exp(1j*np.random.uniform(0, 50*np.pi, (5,)))
n2[20:25] = np.exp(1j*np.random.uniform(0, 50*np.pi, (5,)))
s1 = np.fft.ifft(n1)*1000
s2 = np.fft.ifft(n2)*1000
s2[:5000] = 0
s2[6000:] = 0
s = s1 + s2
def fun0(x):
return s.real[int(np.floor((x+1)*5000))]
get_intercepts_for_function(fun0, num_samples=500, plot_results=True) and import numpy as np
from scipy.interpolate import interp1d
import nengo
def get_intercepts_for_function_derivative(function, num_samples=500,
threshold=5e-3, eval_range=[-1, 1],
plot_results=False):
# evaluate the function, find areas with large derivatives
num_evals = 1000
x = np.linspace(eval_range[0], eval_range[1], num_evals)
vals = np.zeros(num_evals)
for ii in range(num_evals-1):
vals[ii] = function(x[ii])
# get derivatives
dvals = np.hstack([0, np.diff(vals)])
ddvals = np.hstack([0, np.diff(dvals)])
# find the parts that are unusually large, to focus on
high = np.zeros(num_evals)
# high[dvals > np.mean(dvals) + np.var(dvals)] = 1
high[ddvals > np.mean(ddvals) + np.var(ddvals)] = 1
# convolve with Gaussian to get our probability dist for sampling
gauss = np.exp(-np.linspace(-1, 1, 10)**2 / 2)
dist = np.convolve(high, gauss, mode='same')
# normalize distribution
dist /= np.sum(dist)
# also add in a term to make sure everything has some probability
dist += np.ones(dist.shape[0]) / dist.shape[0]
# normalize distribution
dist /= np.sum(dist)
# get cumulative sum, making sure that 0 is the first value
# which is important for the interpolation below
cdf = np.hstack([0, np.cumsum(dist)])
# generate interpolation function
pdist = interp1d(cdf, np.linspace(-1, 1, cdf.shape[0]))
import matplotlib.pyplot as plt
# test pdist
a = [pdist(np.random.random()) for ii in range(1000)]
plt.subplot(211)
plt.plot(a, np.ones(len(a)), 'rx')
plt.plot(np.linspace(-1, 1, vals.shape[0]), vals)
# plt.plot(np.linspace(-1, 1, vals.shape[0]), dvals)
plt.plot(np.linspace(-1, 1, vals.shape[0]), ddvals)
plt.legend(['samples', 'function', 'function derivative'])
plt.subplot(212)
plt.plot(np.linspace(-1, 1, vals.shape[0]), high*max(dist))
plt.plot(np.linspace(-1, 1, vals.shape[0]), dist)
plt.legend(['areas with high derivative', 'probability dist'])
plt.show()
# generate random set of initial eval_points, encoders, and intercepts
num_neurons = 10
eval_points = [np.random.random() for ii in range(num_neurons)]
encoders = [np.random.choice([-1,1],1)[0] for ii in range(num_neurons)]
intercepts = [np.random.random()*encoders[ii] for ii in range(num_neurons)]
def build(intercepts, eval_points, values, build_test=False):
m = nengo.Network()
with m:
if values is not None:
# input function returns time signal
input1 = nengo.Node(output=values)
else:
input1 = nengo.Node(lambda t: np.sin(t / 4))
m.ens1 = nengo.Ensemble(num_neurons, 1,
encoders=np.array(encoders)[:,None],
intercepts=intercepts)
ens2 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
output1 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
output2 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
nengo.Connection(input1, m.ens1)
nengo.Connection(input1, ens2)
nengo.Connection(m.ens1, output1, function=fun0,
eval_points=eval_points)
nengo.Connection(ens2, output2, function=fun0)
if build_test == True:
ens3 = nengo.Ensemble(num_neurons, 1)
output3 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
nengo.Connection(input1, ens3)
nengo.Connection(ens3, output3, function=fun0)
m.probe_output3 = nengo.Probe(output3, synapse=.01)
m.probe_input1 = nengo.Probe(input1)
m.probe_output1 = nengo.Probe(output1, synapse=.01)
m.probe_output2 = nengo.Probe(output2)
return m
for ii in range(num_samples):
m = build(intercepts, eval_points, eval_points[-1])
sim = nengo.Simulator(m)
sim.run(.1)
# randomly add some sample between 0 and 1
error = np.abs(sim.data[m.probe_output2][-1] -
sim.data[m.probe_output1][-1])
if error > threshold:
encoders.append(-1)
encoders.append(1)
epsilon = .001
intercepts.append((eval_points[-1] + epsilon)*-1)
intercepts.append(eval_points[-1] - epsilon)
num_neurons += 2
eval_points.append(pdist(np.random.random()))
if ii % 100 == 0:
print 'ens1.n_neurons=%i'%num_neurons
print 'num eval_points: ', len(eval_points)
m = build(intercepts, eval_points, values=None, build_test=True)
sim = nengo.Simulator(m)
run_time = 20
sim.run(run_time)
print 'error of trained: ', np.sum(np.abs(sim.data[m.probe_output2] - \
sim.data[m.probe_output1])) / (run_time / .001)
print 'error of control: ', np.sum(np.abs(sim.data[m.probe_output2] - \
sim.data[m.probe_output3])) / (run_time / .001)
if plot_results == True:
import matplotlib.pyplot as plt
plt.plot(sim.trange(), sim.data[m.probe_input1])
plt.plot(sim.trange(), sim.data[m.probe_output1])
plt.plot(sim.trange(), sim.data[m.probe_output2])
plt.plot(sim.trange(), sim.data[m.probe_output3])
plt.legend(['input', 'approx', 'answer', 'control'])
plt.figure()
from nengo.utils.ensemble import tuning_curves as tc
eps, a = tc(m.ens1, sim)
plt.plot(eps, a)
plt.show()
return intercepts, eval_points, encoders, num_neurons
################################################################################
if __name__ == '__main__':
# generate a random target signal to follow
n1 = np.zeros((10000,), dtype=complex)
n2 = np.zeros((10000,), dtype=complex)
n1[:5] = np.exp(1j*np.random.uniform(0, 50*np.pi, (5,)))
n2[20:25] = np.exp(1j*np.random.uniform(0, 50*np.pi, (5,)))
s1 = np.fft.ifft(n1)*1000
s2 = np.fft.ifft(n2)*1000
s2[:5000] = 0
s2[6000:] = 0
s = s1 + s2
def fun0(x):
return s.real[int(np.floor((x+1)*5000))]
get_intercepts_for_function_derivative(fun0, num_samples=200, plot_results=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Migrated from nengo/nengo#871.
I added a small test, which revealed a small bug -- the
rng
wasn't getting passed to thesample
(nowget_samples
) function. Fixed that, now works and gives deterministic results whenrng
is set!Note that this should wait until nengo/nengo#1181 is merged, in case the
get_samples
functions undergoes any other changes.