Skip to content

nomaanakhan/CIFAR-10-TensorFlow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

CIFAR-10-TensorFlow

Created a TensorFlow model for CIFAR-10 data set.

Model Components:

  1. keras.layers.Conv2D(32, (3, 3), padding='same', activation=tf.nn.relu, input_shape=(32, 32, 3)),
  2. keras.layers.Conv2D(64, (3, 3)),
  3. keras.layers.MaxPooling2D(2, 2),
  4. keras.layers.Dropout(0.2),
  5. keras.layers.Conv2D(32, (3, 3), padding='same', activation=tf.nn.relu, input_shape=(32, 32, 3)),
  6. keras.layers.MaxPooling2D(2, 2),
  7. keras.layers.Dropout(0.1),
  8. keras.layers.Conv2D(32, (3, 3), padding='same', activation=tf.nn.relu, input_shape=(32, 32, 3)),
  9. keras.layers.Conv2D(64, (3, 3)),
  10. keras.layers.MaxPooling2D(2, 2),
  11. keras.layers.Dropout(0.3),
  12. keras.layers.Flatten(),
  13. keras.layers.Dense(1024, activation=tf.nn.relu),
  14. keras.layers.Dense(512, activation=tf.nn.relu),
  15. keras.layers.Dense(10, activation=tf.nn.softmax)

Model Results:

The test accuracy for my model was around 0.7926999926567078.

The test loss for my model was around 0.7969602546691894.

The model took around 298.4258623123169 seconds to run on Google Colab.

About

Created a TensorFlow model for CIFAR-10 data set.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published