Created a TensorFlow model for CIFAR-10 data set.
- keras.layers.Conv2D(32, (3, 3), padding='same', activation=tf.nn.relu, input_shape=(32, 32, 3)),
- keras.layers.Conv2D(64, (3, 3)),
- keras.layers.MaxPooling2D(2, 2),
- keras.layers.Dropout(0.2),
- keras.layers.Conv2D(32, (3, 3), padding='same', activation=tf.nn.relu, input_shape=(32, 32, 3)),
- keras.layers.MaxPooling2D(2, 2),
- keras.layers.Dropout(0.1),
- keras.layers.Conv2D(32, (3, 3), padding='same', activation=tf.nn.relu, input_shape=(32, 32, 3)),
- keras.layers.Conv2D(64, (3, 3)),
- keras.layers.MaxPooling2D(2, 2),
- keras.layers.Dropout(0.3),
- keras.layers.Flatten(),
- keras.layers.Dense(1024, activation=tf.nn.relu),
- keras.layers.Dense(512, activation=tf.nn.relu),
- keras.layers.Dense(10, activation=tf.nn.softmax)
The test accuracy for my model was around 0.7926999926567078.
The test loss for my model was around 0.7969602546691894.
The model took around 298.4258623123169 seconds to run on Google Colab.