tensorized_rnn
contains our implementations of GRU and LSTM as well as their tensorized counterparts, TT-GRU and TT-LSTM.t3nsor
contains the tensor library used (see README within).experiments
contains models and experiments performed using our tensorized architectures.
- Python 3.6
- CPU or NVIDIA GPU + CUDA
pytorch 1.1.0
torchvision 0.3.0
numpy 1.15.4
sympy 1.5.1
scipy 1.1.0
matplotlib 3.1.3
webrtcvad 2.0.10
librosa 0.6.2
umap-learn 0.4.2
tqdm 4.43.0
multiprocess 0.70.9
comet-ml 3.1.6
python pmnist_test.py --epochs 5 --permute --tt --ncores 2 --ttrank 4
Download the LibriSpeech dataset. Then preprocess
python encoder_preprocess.py -r /path/to/raw/dataset/root -o /path/to/output/dir -d librispeech_other
Train
python encoder_train.py --clean_data_root /path/to/output/dir -m /dir/to/save/models/ -v 50 -u 100
- Charles C Onu
- Jacob Miller
- Doina Precup
If you use this code in your research, please cite our work:
Onu, C. C., Miller, J. E., & Precup, D. (2020). A Fully Tensorized Recurrent Neural Network. arXiv preprint arXiv:2010.04196.