-
Notifications
You must be signed in to change notification settings - Fork 85
/
train_helpers.py
190 lines (158 loc) · 6.72 KB
/
train_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import numpy as np
from mpi4py import MPI
import socket
import argparse
import os
import json
import subprocess
from hps import Hyperparams, parse_args_and_update_hparams, add_vae_arguments
from utils import (logger,
local_mpi_rank,
mpi_size,
maybe_download,
mpi_rank)
from data import mkdir_p
from contextlib import contextmanager
import torch.distributed as dist
from apex.optimizers import FusedAdam as AdamW
from vae import VAE
from torch.nn.parallel.distributed import DistributedDataParallel
def update_ema(vae, ema_vae, ema_rate):
for p1, p2 in zip(vae.parameters(), ema_vae.parameters()):
p2.data.mul_(ema_rate)
p2.data.add_(p1.data * (1 - ema_rate))
def save_model(path, vae, ema_vae, optimizer, H):
torch.save(vae.state_dict(), f'{path}-model.th')
torch.save(ema_vae.state_dict(), f'{path}-model-ema.th')
torch.save(optimizer.state_dict(), f'{path}-opt.th')
from_log = os.path.join(H.save_dir, 'log.jsonl')
to_log = f'{os.path.dirname(path)}/{os.path.basename(path)}-log.jsonl'
subprocess.check_output(['cp', from_log, to_log])
def accumulate_stats(stats, frequency):
z = {}
for k in stats[-1]:
if k in ['distortion_nans', 'rate_nans', 'skipped_updates', 'gcskip']:
z[k] = np.sum([a[k] for a in stats[-frequency:]])
elif k == 'grad_norm':
vals = [a[k] for a in stats[-frequency:]]
finites = np.array(vals)[np.isfinite(vals)]
if len(finites) == 0:
z[k] = 0.0
else:
z[k] = np.max(finites)
elif k == 'elbo':
vals = [a[k] for a in stats[-frequency:]]
finites = np.array(vals)[np.isfinite(vals)]
z['elbo'] = np.mean(vals)
z['elbo_filtered'] = np.mean(finites)
elif k == 'iter_time':
z[k] = stats[-1][k] if len(stats) < frequency else np.mean([a[k] for a in stats[-frequency:]])
else:
z[k] = np.mean([a[k] for a in stats[-frequency:]])
return z
def linear_warmup(warmup_iters):
def f(iteration):
return 1.0 if iteration > warmup_iters else iteration / warmup_iters
return f
def setup_mpi(H):
H.mpi_size = mpi_size()
H.local_rank = local_mpi_rank()
H.rank = mpi_rank()
os.environ["RANK"] = str(H.rank)
os.environ["WORLD_SIZE"] = str(H.mpi_size)
os.environ["MASTER_PORT"] = str(H.port)
# os.environ["NCCL_LL_THRESHOLD"] = "0"
os.environ["MASTER_ADDR"] = MPI.COMM_WORLD.bcast(socket.gethostname(), root=0)
torch.cuda.set_device(H.local_rank)
dist.init_process_group(backend='nccl', init_method=f"env://")
def distributed_maybe_download(path, local_rank, mpi_size):
if not path.startswith('gs://'):
return path
filename = path[5:].replace('/', '-')
with first_rank_first(local_rank, mpi_size):
fp = maybe_download(path, filename)
return fp
@contextmanager
def first_rank_first(local_rank, mpi_size):
if mpi_size > 1 and local_rank > 0:
dist.barrier()
try:
yield
finally:
if mpi_size > 1 and local_rank == 0:
dist.barrier()
def setup_save_dirs(H):
H.save_dir = os.path.join(H.save_dir, H.desc)
mkdir_p(H.save_dir)
H.logdir = os.path.join(H.save_dir, 'log')
def set_up_hyperparams(s=None):
H = Hyperparams()
parser = argparse.ArgumentParser()
parser = add_vae_arguments(parser)
parse_args_and_update_hparams(H, parser, s=s)
setup_mpi(H)
setup_save_dirs(H)
logprint = logger(H.logdir)
for i, k in enumerate(sorted(H)):
logprint(type='hparam', key=k, value=H[k])
np.random.seed(H.seed)
torch.manual_seed(H.seed)
torch.cuda.manual_seed(H.seed)
logprint('training model', H.desc, 'on', H.dataset)
return H, logprint
def restore_params(model, path, local_rank, mpi_size, map_ddp=True, map_cpu=False):
state_dict = torch.load(distributed_maybe_download(path, local_rank, mpi_size), map_location='cpu' if map_cpu else None)
if map_ddp:
new_state_dict = {}
l = len('module.')
for k in state_dict:
if k.startswith('module.'):
new_state_dict[k[l:]] = state_dict[k]
else:
new_state_dict[k] = state_dict[k]
state_dict = new_state_dict
model.load_state_dict(state_dict)
def restore_log(path, local_rank, mpi_size):
loaded = [json.loads(l) for l in open(distributed_maybe_download(path, local_rank, mpi_size))]
try:
cur_eval_loss = min([z['elbo'] for z in loaded if 'type' in z and z['type'] == 'eval_loss'])
except ValueError:
cur_eval_loss = float('inf')
starting_epoch = max([z['epoch'] for z in loaded if 'type' in z and z['type'] == 'train_loss'])
iterate = max([z['step'] for z in loaded if 'type' in z and z['type'] == 'train_loss'])
return cur_eval_loss, iterate, starting_epoch
def load_vaes(H, logprint):
vae = VAE(H)
if H.restore_path:
logprint(f'Restoring vae from {H.restore_path}')
restore_params(vae, H.restore_path, map_cpu=True, local_rank=H.local_rank, mpi_size=H.mpi_size)
ema_vae = VAE(H)
if H.restore_ema_path:
logprint(f'Restoring ema vae from {H.restore_ema_path}')
restore_params(ema_vae, H.restore_ema_path, map_cpu=True, local_rank=H.local_rank, mpi_size=H.mpi_size)
else:
ema_vae.load_state_dict(vae.state_dict())
ema_vae.requires_grad_(False)
vae = vae.cuda(H.local_rank)
ema_vae = ema_vae.cuda(H.local_rank)
vae = DistributedDataParallel(vae, device_ids=[H.local_rank], output_device=H.local_rank)
if len(list(vae.named_parameters())) != len(list(vae.parameters())):
raise ValueError('Some params are not named. Please name all params.')
total_params = 0
for name, p in vae.named_parameters():
total_params += np.prod(p.shape)
logprint(total_params=total_params, readable=f'{total_params:,}')
return vae, ema_vae
def load_opt(H, vae, logprint):
optimizer = AdamW(vae.parameters(), weight_decay=H.wd, lr=H.lr, betas=(H.adam_beta1, H.adam_beta2))
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=linear_warmup(H.warmup_iters))
if H.restore_optimizer_path:
optimizer.load_state_dict(
torch.load(distributed_maybe_download(H.restore_optimizer_path, H.local_rank, H.mpi_size), map_location='cpu'))
if H.restore_log_path:
cur_eval_loss, iterate, starting_epoch = restore_log(H.restore_log_path, H.local_rank, H.mpi_size)
else:
cur_eval_loss, iterate, starting_epoch = float('inf'), 0, 0
logprint('starting at epoch', starting_epoch, 'iterate', iterate, 'eval loss', cur_eval_loss)
return optimizer, scheduler, cur_eval_loss, iterate, starting_epoch