Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adjust printing of Galois context objects #2865

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions docs/src/NumberTheory/galois.md
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ galois_group(f::PolyRingElem{<:FieldElem})

Over the rational function field, we can also compute the monodromy group:
```@meta
DocTestFilters = r"Group\(.*\]\)"
DocTestFilters = r"Galois context\(.*\]\)"
```
```jldoctest galqt; setup = :(using Oscar, Random ; Random.seed!(1))
julia> Qt, t = RationalFunctionField(QQ, "t");
Expand All @@ -102,10 +102,10 @@ julia> subfields(F)
(Function Field over Rational field with defining polynomial a^3 - 54*t - 27, (-1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2))

julia> galois_group(F)
(Permutation group of degree 6 and order 6, Galois Context for s^6 + 108*t^2 + 540*t + 675)
(Permutation group of degree 6 and order 6, Galois context for s^6 + 108*t^2 + 540*t + 675)

julia> G, C, k = galois_group(F, overC = true)
(Permutation group of degree 6 and order 3, Galois Context for s^6 + 108*t^2 + 540*t + 675, Number field of degree 2 over QQ)
(Permutation group of degree 6 and order 3, Galois context for s^6 + 108*t^2 + 540*t + 675, Number field of degree 2 over QQ)

```
So, while the splitting field over `Q(t)` has degree `6`, the galois group there
Expand Down Expand Up @@ -139,7 +139,7 @@ julia> Qx, x = QQ["x"];
julia> f = (x^2-2)*(x^2-3);

julia> G, C = galois_group(f)
(Permutation group of degree 4 and order 4, Galois Context for x^4 - 5*x^2 + 6 and prime 11)
(Permutation group of degree 4 and order 4, Galois context for x^4 - 5*x^2 + 6 and prime 11)

julia> r = roots(C, 5)
4-element Vector{qadic}:
Expand Down
2 changes: 1 addition & 1 deletion experimental/GaloisGrp/src/Solve.jl
Original file line number Diff line number Diff line change
Expand Up @@ -291,7 +291,7 @@ one, compute the corresponding subfields as a tower.
julia> Qx, x = QQ["x"];

julia> G, C = galois_group(x^3-3*x+17)
(Permutation group of degree 3 and order 6, Galois Context for x^3 - 3*x + 17 and prime 7)
(Permutation group of degree 3 and order 6, Galois context for x^3 - 3*x + 17 and prime 7)

julia> d = derived_series(G)
3-element Vector{PermGroup}:
Expand Down
16 changes: 9 additions & 7 deletions src/NumberTheory/GaloisGrp/GaloisGrp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
upper_bound
using Oscar: SLPolyRing, SLPoly, SLPolynomialRing, CycleType

import Oscar: pretty, LowercaseOff

export cauchy_ideal
export elementary_symmetric
export fixed_field
Expand Down Expand Up @@ -485,7 +487,7 @@
end

function Base.show(io::IO, GC::GaloisCtx{ComplexRootCtx})
print(io, "Galois Context for $(GC.f) using complex roots")
print(pretty(io), LowercaseOff(), "Galois context for $(GC.f) using complex roots")

Check warning on line 490 in src/NumberTheory/GaloisGrp/GaloisGrp.jl

View check run for this annotation

Codecov / codecov/patch

src/NumberTheory/GaloisGrp/GaloisGrp.jl#L490

Added line #L490 was not covered by tests
end

function Hecke.roots(C::GaloisCtx{ComplexRootCtx}, pr::Int = 10; raw::Bool = false)
Expand Down Expand Up @@ -556,7 +558,7 @@
end

function Base.show(io::IO, GC::GaloisCtx{SymbolicRootCtx})
print(io, "Galois Context for $(GC.f) using symbolic roots")
print(pretty(io), LowercaseOff(), "Galois context for $(GC.f) using symbolic roots")

Check warning on line 561 in src/NumberTheory/GaloisGrp/GaloisGrp.jl

View check run for this annotation

Codecov / codecov/patch

src/NumberTheory/GaloisGrp/GaloisGrp.jl#L561

Added line #L561 was not covered by tests
end

function Hecke.roots(C::GaloisCtx{SymbolicRootCtx}, ::Int; raw::Bool = false)
Expand Down Expand Up @@ -598,10 +600,10 @@
end

function Base.show(io::IO, GC::GaloisCtx{Hecke.qAdicRootCtx})
print(io, "Galois Context for $(GC.f) and prime $(GC.C.p)")
print(pretty(io), LowercaseOff(), "Galois context for $(GC.f) and prime $(GC.C.p)")
end
function Base.show(io::IO, GC::GaloisCtx{<:Hecke.MPolyFact.HenselCtxFqRelSeries})
print(io, "Galois Context for $(GC.f)")
print(pretty(io), LowercaseOff(), "Galois context for $(GC.f)")
end


Expand Down Expand Up @@ -1933,7 +1935,7 @@
julia> K, a = cyclotomic_field(5);

julia> G, C = galois_group(K)
(Permutation group of degree 4 and order 4, Galois Context for x^4 + x^3 + x^2 + x + 1 and prime 19)
(Permutation group of degree 4 and order 4, Galois context for x^4 + x^3 + x^2 + x + 1 and prime 19)

julia> describe(G)
"C4"
Expand Down Expand Up @@ -2382,7 +2384,7 @@
with galois group isomorphic to the original one.

# Examples
```jldoctest; filter = r"Group\(.*\]\)"
```jldoctest; filter = r"Galois context\(.*\]\)"
julia> Qx, x = QQ["x"];

julia> G, C = galois_group(x^3-2);
Expand All @@ -2392,7 +2394,7 @@
Number field of degree 6 over QQ

julia> galois_group(ans[1])
(Permutation group of degree 6 and order 6, Galois Context for x^6 + 324*x^4 - 4*x^3 + 34992*x^2 + 1296*x + 1259716 and prime 13)
(Permutation group of degree 6 and order 6, Galois context for x^6 + 324*x^4 - 4*x^3 + 34992*x^2 + 1296*x + 1259716 and prime 13)

julia> is_isomorphic(ans[1], G)
true
Expand Down
Loading