Skip to content

oxbbar/course-data-scientist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Data Scientist - Career Path

Table of Contents

Skills

  • Python
  • Jupyter Notebook
  • pandas
  • NumPy
  • Data Cleaning
  • Data Analysis
  • Data Visualisation
  • SQL
  • APIs and Web Scraping
  • Statistics
  • Conditional Probability
  • Git

Projects

Jupyter Notebooks

Part 1: Introduction to Python Programming

Part 2: Data Analysis and Visualization

Part 3: Data Cleaning

  • Part 3.1 -
  • Part 3.2 -
  • Part 3.3 -

Part 4: The Command Line

  • Part 4.1 -
  • Part 4.2 -

Part 5: Working with Data Sources Using SQL

  • Part 5.1 -
  • Part 5.2 -
  • Part 5.3 -
  • Part 5.4 -
  • Part 5.5 -
  • Part 5.6 -

Part 6: APIs and Web Scraping in Python

  • Part 6.1 -
  • Part 6.2 -

Part 7: Probability and Statistics

  • Part 7.1 -
  • Part 7.2 -
  • Part 7.3 -
  • Part 7.4 -
  • Part 7.5 -

Part 8: Machine Learning In Python

  • Part 8.1 -
  • Part 8.2 -
  • Part 8.3 -
  • Part 8.4 -
  • Part 8.5 -
  • Part 8.6 -
  • Part 8.7 -
  • Part 8.8 -
  • Part 8.9 -

Part 9: Deep Learning in Python

  • Part 9.1 -

Part 10: Advanced Topics in Data Science

  • Part 10.1 -
  • Part 10.2 -
  • Part 10.3 -

Website

https://www.dataquest.io/path/data-scientist/

Descriptions of Courses

(Updated 2023/09/29)

Part 1: Python Introduction [4 courses]

  1. Introduction to Data Analysis in Excel
  • Write computer programs using Python
  • Save values using variables
  • Process numerical data and text data
  • Create lists using Python
  1. Basic Operators and Data Structures in Python
  • Use for loops to repeat processes and conduct data analysis
  • Implement if, else, and elif statements in programming logic
  • Employ logical and comparison operators in Python
  • Develop and update Python dictionaries for data manipulation
  • Construct frequency tables using dictionaries for data analytics
  1. Python Functions and Jupyter Notebook
  • Write Python functions
  • ebug functions
  • Define function arguments
  • Write functions that return multiple variables
  • Employ Jupyter notebook
  • Build a portfolio project
  1. Intermediate Python for Data Science
  • Clean and analyze text data
  • Define object-oriented programming in Python
  • Process dates and times

Part 2: Data Analysis and Visualization [3 courses]

  1. Introduction to Pandas and NumPy for Data Analysis
  • Improve your workflow using vectorized operations
  • Select data by value using Boolean indexing
  • Analyze data using pandas and NumPy
  1. Introduction to Data Visualization in Python
  • Visualize time series data with line plots
  • Define correlations and visualize them with scatter plots
  • Visualize frequency distributions with bar plots and histograms
  • Improve your exploratory data visualization workflow using pandas
  • Visualize multiple variables using Seaborn's relational plots
  1. Telling Stories Using Data Visualization and Information Design
  • Create graphs using information design principles
  • Create narrative data visualizations using Matplotlib
  • Create visual patterns using Gestalt principles
  • Control attention using pre-attentive attributes
  • Employ Matplotlib's built-in styles

Part 3: Data Cleaning [3 courses]

Part 4: The Command Line [2 courses]

Part 5: Working with Data Sources Using SQL [6 courses]

Part 6: APIs and Web Scraping in Python [2 courses]

Part 7: Probability and Statistics [5 courses]

Part 8: Machine Learning In Python [9 courses]

Part 9: Deep Learning in Python [1 course]

Part 10: Advanced Topics in Data Science [3 courses]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published