Skip to content

Replicate your Key Value Store across your network, with consistency, persistance and performance.

License

Notifications You must be signed in to change notification settings

ozanozen/Chronicle-Map

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chronicle Map

Documentation: Tutorial, Javadoc

3 min to understand everything about Chronicle Map

Chronicle Map is an in-memory key-value store designed for low-latency and/or multi-process applications. Notably trading, financial market applications.

Features

  • Ultra low latency: Chronicle Map targets median latency of both read and write queries of less than 1 microsecond in certain tests.
  • High concurrency: write queries scale well up to the number of hardware execution threads in the server. Read queries never block each other.
  • (Optional) persistence to disk.
  • (Optional) eventually-consistent, fully-redundant, asynchronous replication across servers, "last write wins" strategy by default, allows to implement custom state-based CRDT strategy.
  • Multi-key queries.

Unique features

  • Multiple processes could access a Chronicle Map instance concurrently. At the same time, the instance is in-process for each of the accessing processes. (Out-of-process approach to IPC is simply incompatible with Chronicle Map's median latency target of < 1 ÎĽs.)

  • Replication without logs, with constant footprint cost, guarantees progress even if the network doesn't sustain write rates.

Chronicle Map has two meanings: the language-agnostic data store and the implementation of this data store for the JVM. Currently, this is the only implementation.

From Java perspective, Chronicle Map is a ConcurrentMap implementation which stores the entries off-heap, serializing/deserializing key and value objects to/from off-heap memory transparently. Chronicle Map supports

  • Key and value objects caching/reusing for making zero allocations (garbage) on queries.
  • Flyweight values for eliminating serialization/deserialization cost and allowing direct read/write access to off-heap memory.

Primary Chronicle Map use cases

  • Replacing slower key-value stores, like Redis and Memcached, when used within a single server.
  • Replacing similar JVM-centric solutions, like Coherence and Hazelcast, for speed and/or certain Chronicle Map features those solutions lack.
  • Moving parts of the application state out of the Java heap for either
    • Reducing the heap size, for reducing GC pressure, or fitting 32 GB for using Compressed Oops
    • Inter-process communication
    • Persistence
    • Replication across servers
  • Drop-in ConcurrentHashMap replacement, Chronicle Map performs better in some cases.

What guarantees does Chronicle Map provide in ACID terms?

  • Atomicity - single-key queries are atomic if Chronicle Map is properly configured, multi-key queries are not atomic.
  • Consistency - doesn't make sense for key-value stores
  • Isolation - yes (for both single- and multi-key queries).
  • Durability - no, at most, Chronicle Map could be persisted to disk. Durability with Chronicle Map is provided by another level of architecture, for example all requests are sent to several nodes - master and hot standby. Clustering/distributed architecture is out of the scope of the Chronicle Map project, there are projects on top of Chronicle Map which address these questions, e. g. Chronicle Enterprise.

What is the Chronicle Map's data structure? In one sentence and simplified, a Chronicle Map instance is a big chunk of shared memory (optionally mapped to disk), split into independent segments, each segment has an independent memory allocation for storing the entries, a hash table for search, and a lock in shared memory (implemented via CAS loops) for managing concurrent access. Read the Chronicle Map data store design overview for more.

Chronicle Map is not

  • A document store. No secondary indexes.
  • A multimap. Using a ChronicleMap<K, Collection<V>> as multimap is technically possible, but often leads to problems. Developing a proper multimap with Chronicle Map's design principles is possible, contact us is you consider sponsoring such development.

Chronicle Map doesn't support

  • Range queries, iteration over the entries in alphabetical order. Keys in Chronicle Map are not sorted.
  • LRU entry eviction

Feature matrix

Chronicle Map Chronicle Engine On-demand
In-memory off-heap Map âś”
Persistence to disk âś”
Remote calls âś”
Eventually-consistent replication (100% redundancy) âś”
Partially-redundant replication âś”
Synchronous replication âś”
Entry expiration timeouts âś”

Peer projects

Chronicle Map 3 Tutorial

Contents

Difference between Chronicle Map 2 and 3

Functional changes in Chronicle Map 3:

  • Added support for multi-key queries.
  • "Listeners" mechanism fully reworked, see the Behaviour Customization section. This has a number of important consequences, most notable is:
    • Possibility to define replication eventual-consistency strategy, different from "last write wins", e. g. any state-based CRDT.
  • "Stateless clients" functionality (i. e. remote calls) is moved to Chronicle Engine.
  • Replication is done via Chronicle Engine.
  • Chronicle Map 2 has hard creation-time limit on the number of entries storable in the Chronicle Map instance. If the size exceeds this limit, an exception is thrown. In Chronicle Map 3, this limitation is removed, though the number of entries still has to be configured on the Chronicle Map instance creation, exceeding this configured limit is possible, but discouraged. See the Number of entries configuration section.
  • A number of smaller improvements and fixes.

Non-functional changes:

If you use Chronicle Map 2, you might be looking for Chronicle Map 2 Tutorial or Chronicle Map 2 Javadoc.

Download the library

Maven Artifact Download

Maven Central

<dependency>
  <groupId>net.openhft</groupId>
  <artifactId>chronicle-map</artifactId>
  <version><!--replace with the latest version--></version>
</dependency>

Click here to get the Latest Version Number

Maven Snapshot Download

If you want to try out the latest pre-release code, you can download the snapshot artifact manually from https://oss.sonatype.org/content/repositories/snapshots/net/openhft/chronicle-map/. A better way is to add the following to your setting.xml, to allow maven to download snapshots:

<repository>
    <id>Snapshot Repository</id>
    <name>Snapshot Repository</name>
    <url>https://oss.sonatype.org/content/repositories/snapshots</url>
    <snapshots>
        <enabled>true</enabled>
    </snapshots>
</repository>

and define the snapshot version in your pom.xml, for example:

<dependency>
  <groupId>net.openhft</groupId>
  <artifactId>chronicle-map</artifactId>
  <version><!--replace with the latest snapshot version--></version>
</dependency>

Create a ChronicleMap Instance

Creating an instance of ChronicleMap is a little more complex than just calling a constructor. To create an instance you have to use the ChronicleMapBuilder.

import net.openhft.chronicle.map.*
.....

interface PostalCodeRange {
    int minCode();
    void minCode(int minCode);

    int maxCode();
    void maxCode(int maxCode);
}

ChronicleMapBuilder<CharSequence, PostalCodeRange> cityPostalCodesMapBuilder =
    ChronicleMapBuilder.of(CharSequence.class, PostalCodeRange.class)
        .averageKey("Amsterdam")
        .entries(50_000);
ChronicleMap<CharSequence, PostalCodeRange> cityPostalCodes =
    cityPostalCodesMapBuilder.create();

// Or shorter form, without builder variable extraction:

ChronicleMap<Integer, PostalCodeRange> cityPostalCodes = ChronicleMap
    .of(CharSequence.class, PostalCodeRange.class)
    .averageKey("Amsterdam")
    .entries(50_000)
    .create();

This snippet creates a ChronicleMap, supposed to store about 50 000 city name -> postal code mappings. It is accessible within a single Java process - the process it is created within. The data is accessible while the process is alive.

Replace .create() calls with .createPersistedTo(cityPostalCodesFile), if you want the Chronicle Map to either

  • Outlive the process it was created within, e. g. to support hot Java application redeploy
  • Be accessible from multiple processes on the same server
  • Persist the data to disk

The cityPostalCodesFile has to represent the same location on your server among all Java processes, wishing to access this Chronicle Map instance, e. g. System.getProperty("java.io.tmpdir") + "/cityPostalCodes.dat".

The name and location of the file is entirely up to you.

When no processes access the file, it could be freely moved to another location in the system, and even to another server, even running different operating system, opened from another location and you will observe the same data.

If you don't need the Chronicle Map instance to survive the server restart, i. e. you don't need persistence to disk, only multi-process access, choose the file to be mounted on tmpfs, e. g. on Linux it is as easy as placing you file in /dev/shm directory.


You must configure .entries(entries) -- the supposed ChronicleMap size. Try to configure the entries so that the created Chronicle Map is going to serve about 99% requests being less or equal than this number of entries in size.

You shouldn't put additional margin over the actual target number of entries. This bad practice was popularized by new HashMap(capacity) and new HashSet(capacity) constructors, which accept capacity, that should be multiplied by load factor to obtain the actual maximum expected number of entries in the container. ChronicleMap and ChronicleSet don't have a notion of load factor.

See ChronicleMapBuilder#entries() Javadocs for more.


Once ChronicleMap instance is created, it's configurations are sealed and couldn't be changed though the ChronicleMapBuilder instance.


Single ChronicleMap instance per JVM. If you want to access the Chronicle Map instance concurrently within the Java process, you should not create a separate ChronicleMap instance per thread. Within the JVM environment, ChronicleMap instance is a ConcurrentMap, and could be accessed concurrently the same way as e. g. ConcurrentHashMap.

Key and Value Types

Either key or value type of ChronicleMap<K, V> could be:

  • Boxed primitive: Integer, Long, Double, etc.
  • String or CharSequence
  • Array of Java primitives, e. g. byte[], char[] or int[]
  • Any type implementing BytesMarshallable from Chronicle Bytes
  • Any value interface
  • Any Java type implementing Serializable or Externalizable interface
  • Any other type, if .keyMarshaller() or .valueMarshaller() (for the key or value type respectively) is additionally configured in the ChronicleMapBuilder.

Prefer value interfaces. They don't generate garbage and have close to zero serialization/deserialization costs. Prefer them even to boxed primitives, for example, try to use net.openhft.chronicle.core.values.IntValue instead of Integer.

Generally, you must hint the ChronicleMapBuilder with the average sizes of the keys and values, which are going to be inserted into the ChronicleMap. This is needed to allocate the proper volume of the shared memory. Do this via averageKey() (preferred) or averageKeySize() and averageValue() or averageValueSize() respectively.

See the example above: averageKey("Amsterdam") is called, because it is assumed that "Amsterdam" (9 bytes in UTF-8 encoding) is the average length for city names, some names are shorter (Tokyo, 5 bytes), some names are longer (San Francisco, 13 bytes).

Another example: if values in your ChronicleMap are adjacency lists of some social graph, where nodes are represented as long ids, and adjacency lists are long[] arrays. The average number of friends is 150. Configure the ChronicleMap as follows:

Map<Long, long[]> socialGraph = ChronicleMap
    .of(Long.class, long[].class)
    .entries(1_000_000_000L)
    .averageValue(new long[150])
    .create();

You could omit specifying key or value average sizes, if their types are boxed Java primitives or value interfaces. They are constantly-sized and Chronicle Map knows about that.

If the key or value type is constantly sized, or keys or values only of a certain size appear in your Chronicle Map domain, you should prefer to configure constantKeySizeBySample() or constantValueSizeBySample(), instead of averageKey() or averageValue(), for example:

ChronicleSet<UUID> uuids =
    ChronicleSet.of(UUID.class)
        // All UUIDs take 16 bytes.
        .constantKeySizeBySample(UUID.randomUUID())
        .entries(1_000_000)
        .create();

ChronicleMap instance usage patterns

Single-key queries

First of all, ChronicleMap supports all operations from Map: get(), put(), etc, including methods added in Java 8, like compute() and merge(), and ConcurrentMap interfaces: putIfAbsent(), replace(). All operations, including those which include "two steps", e. g. compute(), are correctly synchronized in terms of ConcurrentMap interface.

This means, you could use ChronicleMap instance just like a HashMap or ConcurrentHashMap:

PostalCodeRange amsterdamCodes = Values.newHeapInstance(PostalCodeRange.class);
amsterdamCodes.minCode(1011);
amsterdamCodes.maxCode(1183);
cityPostalCodes.put("Amsterdam", amsterdamCodes);

...

PostalCodeRange amsterdamCodes = cityPostalCodes.get("Amsterdam");

However, this approach often generates garbage, because the values should be deserialized from off-heap memory to on-heap, the new value object are allocated. There are several possibilities to reuse objects efficiently:

Value interfaces instead of boxed primitives

If you want to create a ChronicleMap where keys are long ids, use LongValue instead of Long key:

ChronicleMap<LongValue, Order> orders = ChronicleMap
    .of(LongValue.class, Order.class)
    .entries(1_000_000)
    .create();

LongValue key = Values.newHeapInstance(LongValue.class);
key.setValue(id);
orders.put(key, order);

...

long[] orderIds = ...
// Allocate a single heap instance for inserting all keys from the array.
// This could be a cached or ThreadLocal value as well, eliminating
// allocations altogether.
LongValue key = Values.newHeapInstance(LongValue.class);
for (long id : orderIds) {
    // Reuse the heap instance for each key
    key.setValue(id);
    Order order = orders.get(key);
    // process the order...
}
chronicleMap.getUsing()

Use ChronicleMap#getUsing(K key, V using) to reuse the value object. It works if:

  • The value type is CharSequence, pass StringBuilder as the using argument. For example:
ChronicleMap<LongValue, CharSequence> names = ...
StringBuilder name = new StringBuilder();
for (long id : ids) {
   key.setValue(id);
   names.getUsing(key, name);
   // process the name...
}

In this case, calling names.getUsing(key, name) is equivalent to

name.setLength(0);
name.append(names.get(key));

with the difference that it doesn't generate garbage.

  • The value type is value interface, pass heap instance to read the data into it without new object allocation:
ThreadLocal<PostalCodeRange> cachedPostalCodeRange =
   ThreadLocal.withInitial(() -> Values.newHeapInstance(PostalCodeRange.class));

...

PostalCodeRange range = cachedPostalCodeRange.get();
cityPostalCodes.getUsing(city, range);
// process the range...
  • If the value type implements BytesMarshallable, or Externalizable, ChronicleMap attempts to reuse the given using object by deserializing the value into the given object.
  • If custom marshaller is configured in the ChronicleMapBuilder via .valueMarshaller(), ChronicleMap attempts to reuse the given object by calling readUsing() method from the marshaller interface.

If ChronicleMap fails to reuse the object in getUsing(), it makes no harm, it falls back to object creation, like in get() method. In particular, even null is allowed to be passed as using object. It allows "lazy" using object initialization pattern:

// a field
PostalCodeRange cachedRange = null;

...

// in a method
cachedRange = cityPostalCodes.getUsing(city, cachedRange);
// process the range...

In this example, cachedRange is null initially, on the first getUsing() call the heap value is allocated, and saved in a cachedRange field for later reuse.

If the value type is a value interface, don't use flyweight implementation as getUsing() argument. This is dangerous, because on reusing flyweight points to the ChronicleMap memory directly, but the access is not synchronized. At least you could read inconsistent value state, at most - corrupt the ChronicleMap memory.

For accessing the ChronicleMap value memory directly use the following technique:

Working with the entry within a context section
try (ExternalMapQueryContext<CharSequence, PostalCodeRange, ?> c =
        cityPostalCodes.queryContext("Amsterdam")) {
    MapEntry<CharSequence, PostalCodeRange> entry = c.entry();
    if (entry != null) {
        PostalCodeRange range = entry.value().get();
        // Access the off-heap memory directly, by calling range
        // object getters.
        // This is very rewarding, when the value has a lot of fields
        // and expensive to copy to heap all of them, when you need to access
        // just a few fields.
    } else {
        // city not found..
    }
}

Multi-key queries

In this example, consistent graph edge addition and removals are implemented via multi-key queries:

public static boolean addEdge(
        ChronicleMap<Integer, Set<Integer>> graph, int source, int target) {
    if (source == target)
        throw new IllegalArgumentException("loops are forbidden");
    ExternalMapQueryContext<Integer, Set<Integer>, ?> sourceC = graph.queryContext(source);
    ExternalMapQueryContext<Integer, Set<Integer>, ?> targetC = graph.queryContext(target);
    // order for consistent lock acquisition => avoid dead lock
    if (sourceC.segmentIndex() <= targetC.segmentIndex()) {
        return innerAddEdge(source, sourceC, target, targetC);
    } else {
        return innerAddEdge(target, targetC, source, sourceC);
    }
}

private static boolean innerAddEdge(
        int source, ExternalMapQueryContext<Integer, Set<Integer>, ?> sourceContext,
        int target, ExternalMapQueryContext<Integer, Set<Integer>, ?> targetContext) {
    try (ExternalMapQueryContext<Integer, Set<Integer>, ?> sc = sourceContext) {
        try (ExternalMapQueryContext<Integer, Set<Integer>, ?> tc = targetContext) {
            sc.updateLock().lock();
            tc.updateLock().lock();
            MapEntry<Integer, Set<Integer>> sEntry = sc.entry();
            if (sEntry != null) {
                MapEntry<Integer, Set<Integer>> tEntry = tc.entry();
                if (tEntry != null) {
                    return addEdgeBothPresent(sc, sEntry, source, tc, tEntry, target);
                } else {
                    addEdgePresentAbsent(sc, sEntry, source, tc, target);
                    return true;
                }
            } else {
                MapEntry<Integer, Set<Integer>> tEntry = tc.entry();
                if (tEntry != null) {
                    addEdgePresentAbsent(tc, tEntry, target, sc, source);
                } else {
                    addEdgeBothAbsent(sc, source, tc, target);
                }
                return true;
            }
        }
    }
}

private static boolean addEdgeBothPresent(
        MapQueryContext<Integer, Set<Integer>, ?> sc,
        @NotNull MapEntry<Integer, Set<Integer>> sEntry, int source,
        MapQueryContext<Integer, Set<Integer>, ?> tc,
        @NotNull MapEntry<Integer, Set<Integer>> tEntry, int target) {
    Set<Integer> sNeighbours = sEntry.value().get();
    if (sNeighbours.add(target)) {
        Set<Integer> tNeighbours = tEntry.value().get();
        boolean added = tNeighbours.add(source);
        assert added;
        sEntry.doReplaceValue(sc.wrapValueAsData(sNeighbours));
        tEntry.doReplaceValue(tc.wrapValueAsData(tNeighbours));
        return true;
    } else {
        return false;
    }
}

private static void addEdgePresentAbsent(
        MapQueryContext<Integer, Set<Integer>, ?> sc,
        @NotNull MapEntry<Integer, Set<Integer>> sEntry, int source,
        MapQueryContext<Integer, Set<Integer>, ?> tc, int target) {
    Set<Integer> sNeighbours = sEntry.value().get();
    boolean added = sNeighbours.add(target);
    assert added;
    sEntry.doReplaceValue(sc.wrapValueAsData(sNeighbours));

    addEdgeOneSide(tc, source);
}

private static void addEdgeBothAbsent(MapQueryContext<Integer, Set<Integer>, ?> sc, int source,
        MapQueryContext<Integer, Set<Integer>, ?> tc, int target) {
    addEdgeOneSide(sc, target);
    addEdgeOneSide(tc, source);
}

private static void addEdgeOneSide(MapQueryContext<Integer, Set<Integer>, ?> tc, int source) {
    Set<Integer> tNeighbours = new HashSet<>();
    tNeighbours.add(source);
    MapAbsentEntry<Integer, Set<Integer>> tAbsentEntry = tc.absentEntry();
    assert tAbsentEntry != null;
    tAbsentEntry.doInsert(tc.wrapValueAsData(tNeighbours));
}

public static boolean removeEdge(
        ChronicleMap<Integer, Set<Integer>> graph, int source, int target) {
    ExternalMapQueryContext<Integer, Set<Integer>, ?> sourceC = graph.queryContext(source);
    ExternalMapQueryContext<Integer, Set<Integer>, ?> targetC = graph.queryContext(target);
    // order for consistent lock acquisition => avoid dead lock
    if (sourceC.segmentIndex() <= targetC.segmentIndex()) {
        return innerRemoveEdge(source, sourceC, target, targetC);
    } else {
        return innerRemoveEdge(target, targetC, source, sourceC);
    }
}

private static boolean innerRemoveEdge(
        int source, ExternalMapQueryContext<Integer, Set<Integer>, ?> sourceContext,
        int target, ExternalMapQueryContext<Integer, Set<Integer>, ?> targetContext) {
    try (ExternalMapQueryContext<Integer, Set<Integer>, ?> sc = sourceContext) {
        try (ExternalMapQueryContext<Integer, Set<Integer>, ?> tc = targetContext) {
            sc.updateLock().lock();
            MapEntry<Integer, Set<Integer>> sEntry = sc.entry();
            if (sEntry == null)
                return false;
            Set<Integer> sNeighbours = sEntry.value().get();
            if (!sNeighbours.remove(target))
                return false;

            tc.updateLock().lock();
            MapEntry<Integer, Set<Integer>> tEntry = tc.entry();
            if (tEntry == null)
                throw new IllegalStateException("target node should be present in the graph");
            Set<Integer> tNeighbours = tEntry.value().get();
            if (!tNeighbours.remove(source))
                throw new IllegalStateException("the target node have an edge to the source");
            sEntry.doReplaceValue(sc.wrapValueAsData(sNeighbours));
            tEntry.doReplaceValue(tc.wrapValueAsData(tNeighbours));
            return true;
        }
    }
}

Usage:

HashSet<Integer> averageValue = new HashSet<>();
for (int i = 0; i < AVERAGE_CONNECTIVITY; i++) {
    averageValue.add(i);
}
ChronicleMap<Integer, Set<Integer>> graph = ChronicleMapBuilder
        .of(Integer.class, (Class<Set<Integer>>) (Class) Set.class)
        .entries(100)
        .averageValue(averageValue)
        .create();

addEdge(graph, 1, 2);
removeEdge(graph, 1, 2);

Close ChronicleMap

Unlike ConcurrentHashMap, ChronicleMap stores its data off heap, often in a memory mapped file. Its recommended that you call close() once you have finished working with a ChronicleMap.

map.close()

This is especially important when working with ChronicleMap replication, as failure to call close may prevent you from restarting a replicated map on the same port. In the event that your application crashes it may not be possible to call close(). Your operating system will usually close dangling ports automatically, so although it is recommended that you close() when you have finished with the map, its not something that you must do, it's just something that we recommend you should do.

WARNING

If you call close() too early before you have finished working with the map, this can cause your JVM to crash. Close MUST BE the last thing that you do with the map.

Behaviour Customization

You could customize ChronicleMap behaviour on several levels:

  • ChronicleMapBuilder.entryOperations() define the "inner" listening level, all operations with entries, either during ordinary map method calls, remote calls, replication or modifications during iteration over the map, operate via this configured SPI.

  • ChronicleMapBuilder.mapMethods() is the higher-level of listening for local calls of Map methods. Methods in MapMethods interface correspond to Map interface methods with the same names, and define their implementations for ChronicleMap.

  • ChronicleMapBuilder.remoteOperations() is for listening and customizing behaviour of remote calls, and replication events.

All executions around ChronicleMap go through the three tiers (or the two bottom):

  1. Query tier: MapQueryContext interface
  2. Entry tier: MapEntry and MapAbsentEntry interfaces
  3. Data tier: Data interface

MapMethods and MapRemoteOperations methods accept query context, i. e. these SPI is above the Query tier. MapEntryOperations methods accept MapEntry or MapAbsentEntry, i. e. this SPI is between Query and Entry tiers.

Combined, interception SPI interfaces and ChronicleMap.queryContext() API are powerful enough to

  • Log all operations of some kind on ChronicleMap (e. g. all remove, insert or update operations)
  • Log some specific operations on ChronicleMap (e. g. log only acquireUsing() calls, which has created a new entry)
  • Forbid performing operations of some kind on the ChronicleMap instance
  • Backup all changes to ChronicleMap to some durable storage, e. g. SQL database
  • Perform multi-Chronicle Map operations correctly in concurrent environment, by acquiring locks on all ChronicleMaps before updating them.
  • Perform multi-key operations on a single ChronicleMap correctly in concurrent environment, by acquiring locks on all keys before updating the entries
  • Define own replication/reconciliation logic for distributed Chronicle Maps
  • Dump statistics of the Chronicle Map instance -- each segment's load, size in bytes of each entry, etc.

Example - Simple logging

Just log all modification operations on ChronicleMap

class SimpleLoggingMapEntryOperations<K, V> implements MapEntryOperations<K, V, Void> {

    private static final SimpleLoggingMapEntryOperations INSTANCE =
            new SimpleLoggingMapEntryOperations();

    public static <K, V> MapEntryOperations<K, V, Void> simpleLoggingMapEntryOperations() {
        return SimpleLoggingMapEntryOperations.INSTANCE;
    }

    private SimpleLoggingMapEntryOperations() {}

    @Override
    public Void remove(@NotNull MapEntry<K, V> entry) {
        System.out.println("remove " + entry.key() + ": " + entry.value());
        entry.doRemove();
        return null;
    }

    @Override
    public Void replaceValue(@NotNull MapEntry<K, V> entry, Data<V, ?> newValue) {
        System.out.println("replace " + entry.key() + ": " + entry.value() + " -> " + newValue);
        entry.doReplaceValue(newValue);
        return null;
    }

    @Override
    public Void insert(@NotNull MapAbsentEntry<K, V> absentEntry, Data<V, ?> value) {
        System.out.println("insert " + absentEntry.absentKey() + " -> " + value);
        absentEntry.doInsert(value);
        return null;
    }
}

Usage:

ChronicleMap<IntValue, IntValue> map = ChronicleMap
        .of(Integer.class, IntValue.class)
        .entries(100)
        .entryOperations(simpleLoggingMapEntryOperations())
        .create();

// do anything with the map

Example - BiMap

Possible bidirectional map (i. e. a map that preserves the uniqueness of its values as well as that of its keys) implementation over Chronicle Maps.

enum DualLockSuccess {SUCCESS, FAIL}
class BiMapMethods<K, V> implements MapMethods<K, V, DualLockSuccess> {
    @Override
    public void remove(MapQueryContext<K, V, DualLockSuccess> q, ReturnValue<V> returnValue) {
        while (true) {
            q.updateLock().lock();
            try {
                MapEntry<K, V> entry = q.entry();
                if (entry != null) {
                    returnValue.returnValue(entry.value());
                    if (q.remove(entry) == SUCCESS)
                        return;
                }
            } finally {
                q.readLock().unlock();
            }
        }
    }

    @Override
    public void put(MapQueryContext<K, V, DualLockSuccess> q, Data<V, ?> value,
                    ReturnValue<V> returnValue) {
        while (true) {
            q.updateLock().lock();
            try {
                MapEntry<K, V> entry = q.entry();
                if (entry != null) {
                    throw new IllegalStateException();
                } else {
                    if (q.insert(q.absentEntry(), value) == SUCCESS)
                        return;
                }
            } finally {
                q.readLock().unlock();
            }
        }
    }

    @Override
    public void putIfAbsent(MapQueryContext<K, V, DualLockSuccess> q, Data<V, ?> value,
                            ReturnValue<V> returnValue) {
        while (true) {
            try {
                if (q.readLock().tryLock()) {
                    MapEntry<?, V> entry = q.entry();
                    if (entry != null) {
                        returnValue.returnValue(entry.value());
                        return;
                    }
                    // Key is absent
                    q.readLock().unlock();
                }
                q.updateLock().lock();
                MapEntry<?, V> entry = q.entry();
                if (entry != null) {
                    returnValue.returnValue(entry.value());
                    return;
                }
                // Key is absent
                if (q.insert(q.absentEntry(), value) == SUCCESS)
                    return;
            } finally {
                q.readLock().unlock();
            }
        }
    }

    @Override
    public boolean remove(MapQueryContext<K, V, DualLockSuccess> q, Data<V, ?> value) {
        while (true) {
            q.updateLock().lock();
            MapEntry<K, V> entry = q.entry();
            try {
                if (entry != null && bytesEquivalent(entry.value(), value)) {
                    if (q.remove(entry) == SUCCESS) {
                        return true;
                    } else {
                        //noinspection UnnecessaryContinue
                        continue;
                    }
                } else {
                    return false;
                }
            } finally {
                q.readLock().unlock();
            }
        }
    }

    @Override
    public void acquireUsing(MapQueryContext<K, V, DualLockSuccess> q,
                             ReturnValue<V> returnValue) {
        throw new UnsupportedOperationException();
    }

    @Override
    public void replace(MapQueryContext<K, V, DualLockSuccess> q, Data<V, ?> value,
                        ReturnValue<V> returnValue) {
        throw new UnsupportedOperationException();
    }

    @Override
    public boolean replace(MapQueryContext<K, V, DualLockSuccess> q, Data<V, ?> oldValue,
                           Data<V, ?> newValue) {
        throw new UnsupportedOperationException();
    }

    @Override
    public void compute(MapQueryContext<K, V, DualLockSuccess> q,
                        BiFunction<? super K, ? super V, ? extends V> remappingFunction,
                        ReturnValue<V> returnValue) {
        throw new UnsupportedOperationException();
    }

    @Override
    public void merge(MapQueryContext<K, V, DualLockSuccess> q, Data<V, ?> value,
                      BiFunction<? super V, ? super V, ? extends V> remappingFunction,
                      ReturnValue<V> returnValue) {
        throw new UnsupportedOperationException();
    }
}
class BiMapEntryOperations<K, V> implements MapEntryOperations<K, V, DualLockSuccess> {
    ChronicleMap<V, K> reverse;

    public void setReverse(ChronicleMap<V, K> reverse) {
        this.reverse = reverse;
    }

    @Override
    public DualLockSuccess remove(@NotNull MapEntry<K, V> entry) {
        try (ExternalMapQueryContext<V, K, ?> rq = reverse.queryContext(entry.value())) {
            if (!rq.updateLock().tryLock()) {
                if (entry.context() instanceof MapQueryContext)
                    return FAIL;
                throw new IllegalStateException("Concurrent modifications to reverse map " +
                        "during remove during iteration");
            }
            MapEntry<V, K> reverseEntry = rq.entry();
            if (reverseEntry != null) {
                entry.doRemove();
                reverseEntry.doRemove();
                return SUCCESS;
            } else {
                throw new IllegalStateException(entry.key() + " maps to " + entry.value() +
                        ", but in the reverse map this value is absent");
            }
        }
    }

    @Override
    public DualLockSuccess replaceValue(@NotNull MapEntry<K, V> entry, Data<V, ?> newValue) {
        throw new UnsupportedOperationException();
    }

    @Override
    public DualLockSuccess insert(@NotNull MapAbsentEntry<K, V> absentEntry,
                                  Data<V, ?> value) {
        try (ExternalMapQueryContext<V, K, ?> rq = reverse.queryContext(value)) {
            if (!rq.updateLock().tryLock())
                return FAIL;
            MapAbsentEntry<V, K> reverseAbsentEntry = rq.absentEntry();
            if (reverseAbsentEntry != null) {
                absentEntry.doInsert(value);
                reverseAbsentEntry.doInsert(absentEntry.absentKey());
                return SUCCESS;
            } else {
                Data<K, ?> reverseKey = rq.entry().value();
                if (reverseKey.equals(absentEntry.absentKey())) {
                    // recover
                    absentEntry.doInsert(value);
                    return SUCCESS;
                }
                throw new IllegalArgumentException("Try to associate " +
                        absentEntry.absentKey() + " with " + value + ", but in the reverse " +
                        "map this value already maps to " + reverseKey);
            }
        }
    }
}

Usage:

BiMapEntryOperations<Integer, CharSequence> biMapOps1 = new BiMapEntryOperations<>();
ChronicleMap<Integer, CharSequence> map1 = ChronicleMapBuilder
        .of(Integer.class, CharSequence.class)
        .entries(100)
        .actualSegments(1)
        .averageValueSize(10)
        .entryOperations(biMapOps1)
        .mapMethods(new BiMapMethods<>())
        .create();

BiMapEntryOperations<CharSequence, Integer> biMapOps2 = new BiMapEntryOperations<>();
ChronicleMap<CharSequence, Integer> map2 = ChronicleMapBuilder
        .of(CharSequence.class, Integer.class)
        .entries(100)
        .actualSegments(1)
        .averageKeySize(10)
        .entryOperations(biMapOps2)
        .mapMethods(new BiMapMethods<>())
        .create();

biMapOps1.setReverse(map2);
biMapOps2.setReverse(map1);

map1.put(1, "1");
System.out.println(map2.get("1"));

Example - Monitor Chronicle Map Statistics

    public static <K, V> void printMapStats(ChronicleMap<K, V> map) {
        for (int i = 0; i < map.segments(); i++) {
            try (MapSegmentContext<K, V, ?> c = map.segmentContext(i)) {
                System.out.printf("segment %d contains %d entries\n", i, c.size());
                c.forEachSegmentEntry(e -> System.out.printf("%s, %d bytes -> %s, %d bytes\n",
                        e.key(), e.key().size(), e.value(), e.value().size()));
            }
        }
    }

About

Replicate your Key Value Store across your network, with consistency, persistance and performance.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 100.0%