Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

possible bug when using datetime.replace() on a tz-aware pd.DatetimeIndex #18785

Closed
alessioarena opened this issue Dec 15, 2017 · 1 comment

Comments

Projects
None yet
3 participants
@alessioarena
Copy link

commented Dec 15, 2017

Code Sample, a copy-pastable example if possible

index = pd.DatetimeIndex(pd.date_range(pd.Timestamp(2000,1,1), pd.Timestamp(2005,1,1), freq='MS', tz='Australia/Melbourne'))
test = pd.DataFrame({'data':range(len(index))}, index=index)
test = test.resample('Y').mean()
print(test.index)
> DatetimeIndex(['2000-12-31 00:00:00+11:00', '2001-12-31 00:00:00+11:00',
               '2002-12-31 00:00:00+11:00', '2003-12-31 00:00:00+11:00',
               '2004-12-31 00:00:00+11:00', '2005-12-31 00:00:00+11:00'],
              dtype='datetime64[ns, Australia/Melbourne]', freq='A-DEC')
test.index = pd.DatetimeIndex([x.replace(month=6, day=1) for x in test.index])
print(test.index)
> DatetimeIndex(['2000-05-31 23:00:00+10:00', '2001-05-31 23:00:00+10:00',
               '2002-05-31 23:00:00+10:00', '2003-05-31 23:00:00+10:00',
               '2004-05-31 23:00:00+10:00', '2005-05-31 23:00:00+10:00'],
              dtype='datetime64[ns, Australia/Melbourne]', freq=None)
#but if I rerun again the same line
test.index = pd.DatetimeIndex([x.replace(month=6, day=1) for x in test.index])
print(test.index)
>DatetimeIndex(['2000-06-01 23:00:00+10:00', '2001-06-01 23:00:00+10:00',
               '2002-06-01 23:00:00+10:00', '2003-06-01 23:00:00+10:00',
               '2004-06-01 23:00:00+10:00', '2005-06-01 23:00:00+10:00'],
              dtype='datetime64[ns, Australia/Melbourne]', freq=None)

Problem description

Hi there,

I'm not sure what is happening, but the output is definitely not what I am expecting.

Let's say that I have a timeserie with a 'MS' frequency.
At some point I want this to be resampled to a mid-year frequency

To do that I'm using the .resample('Y').mean() methods, followed by a direct replacement of the datetime object months/day using the .replace(month=6, day=1) method.
(by the way, if you can think of a better way...)

The expected output would be to have all datetime objects pointing to the first day in June, but instead they are now representing the last day of May (23:00 instead of 00:00).
I believe this problem is in some way related to the DST -> ST conversion, but I'm not sure when this occurs.

just as a test, I tried to then rerun the same line on the newly created object, and that leads to the expected result (all objects representing the first day of June, 23:00)

Is this an actual bug, or am I doing something completely wrong?
Cheers,
Alessio

Expected Output

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.4.0-104-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.21.0
pytest: None
pip: 9.0.1
setuptools: 38.2.4
Cython: 0.27.3
numpy: 1.13.3
scipy: 1.0.0
pyarrow: 0.7.1
xarray: None
IPython: 6.2.1
sphinx: None
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.3
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.1.0
openpyxl: None
xlrd: 1.1.0
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0.1
sqlalchemy: 1.1.13
pymysql: None
psycopg2: 2.7.3.2 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: 0.1.2
fastparquet: None
pandas_gbq: None
pandas_datareader: None

@jreback jreback referenced this issue Dec 15, 2017

Merged

handle DST appropriately in Timestamp.replace #18618

4 of 4 tasks complete
@jreback

This comment has been minimized.

Copy link
Contributor

commented Dec 15, 2017

so this is after #18618

In [1]: index = pd.DatetimeIndex(pd.date_range(pd.Timestamp(2000,1,1), pd.Timestamp(2005,1,1), freq='MS', tz='Australia/Melbourne'))
   ...: test = pd.DataFrame({'data':range(len(index))}, index=index)
   ...: test = test.resample('Y').mean()
   ...: 

In [2]: test
Out[2]: 
                           data
2000-12-31 00:00:00+11:00   5.5
2001-12-31 00:00:00+11:00  17.5
2002-12-31 00:00:00+11:00  29.5
2003-12-31 00:00:00+11:00  41.5
2004-12-31 00:00:00+11:00  53.5
2005-12-31 00:00:00+11:00  60.0

In [3]: test.index = pd.DatetimeIndex([x.replace(month=6, day=1) for x in test.index])
   ...: print(test.index)
   ...: 
DatetimeIndex(['2000-06-01 00:00:00+10:00', '2001-06-01 00:00:00+10:00',
               '2002-06-01 00:00:00+10:00', '2003-06-01 00:00:00+10:00',
               '2004-06-01 00:00:00+10:00', '2005-06-01 00:00:00+10:00'],
              dtype='datetime64[ns, Australia/Melbourne]', freq=None)

In [4]: test.index = pd.DatetimeIndex([x.replace(month=6, day=1) for x in test.index])
   ...: print(test.index)
   ...: 
DatetimeIndex(['2000-06-01 00:00:00+10:00', '2001-06-01 00:00:00+10:00',
               '2002-06-01 00:00:00+10:00', '2003-06-01 00:00:00+10:00',
               '2004-06-01 00:00:00+10:00', '2005-06-01 00:00:00+10:00'],
              dtype='datetime64[ns, Australia/Melbourne]', freq=None)

@jreback jreback added this to the 0.22.0 milestone Dec 15, 2017

@jreback jreback modified the milestones: 0.23.0, Next Major Release Apr 14, 2018

@mroeschke mroeschke referenced this issue Aug 5, 2018

Merged

CLN: Old timezone issues #22201

8 of 8 tasks complete

@jreback jreback modified the milestones: Contributions Welcome, 0.24.0 Aug 6, 2018

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.