Skip to content

Cannot tell usecols to ignore missing columns #25986

@DanMargetts

Description

@DanMargetts

Code Sample

import pandas as pd
# Where example.csv is:
# column1,column2
# 1, 2

pd.read_csv('example.csv', usecols=['column1', 'column2', ' column3'])

Problem description

When specifying usecols to reduce the amount of data loaded, read_csv fails if the columns do not exist. This is not always desired, especially when reading a large number of files that may have varying columns.

There should be an option to suppress this and allow usecols to cut-down columns without enforcing their presence.

Current Output

ValueError: Usecols do not match columns in file, columns expected but not found: ['column3']

Expected Output

No error thrown where only some of the usecols exist.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.7.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.23.4
pytest: 4.0.2
pip: 18.1
setuptools: 40.6.3
Cython: 0.29.2
numpy: 1.15.4
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: 1.8.2
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.8
feather: None
matplotlib: 3.0.2
openpyxl: 2.5.12
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.2
lxml: 4.2.5
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.15
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions