-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Code Sample, a copy-pastable example if possible
import pandas as pd
import numpy as np
s = pd.Series([1, 2, np.nan, np.nan, np.nan]).astype('M8[ns]')
print(s)
0 1970-01-01 00:00:00.000000001
1 1970-01-01 00:00:00.000000002
2 1970-01-01 00:00:00.000000000
3 1970-01-01 00:00:00.000000000
4 1970-01-01 00:00:00.000000000
dtype: datetime64[ns]
Problem description
This problem is on the master branch as of commit baeb1bf
All 'nan' like entries, when converted to datetime should be NaT.
Several tests are failing, the example above is from pandas/tests/test_algos.py
Expected Output
0 1970-01-01 00:00:00.000000001
1 1970-01-01 00:00:00.000000002
2 NaT
3 NaT
4 NaT
dtype: datetime64[ns]
Output of pd.show_versions()
[paste the output of pd.show_versions()
here below this line]
INSTALLED VERSIONS
commit: baeb1bf
python: 3.7.3.final.0
python-bits: 32
OS: Linux
OS-release: 3.18.0-19095-g86596f58eadf
machine: aarch64
processor:
byteorder: little
LC_ALL: en_US.utf8
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.25.0.dev0+761.gbaeb1bf92.dirty
pytest: 4.5.0
pip: 19.1.1
setuptools: 41.0.1
Cython: 0.29.10
numpy: 1.16.3
scipy: 1.3.0
pyarrow: None
xarray: 0.12.1
IPython: 7.5.0
sphinx: 2.0.1
patsy: None
dateutil: 2.8.0
pytz: 2019.1
blosc: 1.8.1
bottleneck: None
tables: 3.5.2
numexpr: 2.6.9
feather: None
matplotlib: 3.1.0
openpyxl: 2.6.2
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.8
lxml.etree: 4.3.4
bs4: 4.7.1
html5lib: 0.9999999
sqlalchemy: 1.3.4
pymysql: None
psycopg2: None
jinja2: 2.10.1
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: 0.2.2