-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Closed
Labels
PerformanceMemory or execution speed performanceMemory or execution speed performance
Milestone
Description
Is this correct? (on current master)
In [1]: df = pandas.DataFrame(np.random.randn(10,10000))
In [2]: %timeit repr(df)
1 loops, best of 3: 9.85 s per loop
n [4]: pandas.__version__
Out[4]: '0.12.0.dev-a62ea81'
%prun repr(df)
ncalls tottime percall cumtime percall filename:lineno(function)
1920528 1.310 0.000 1.710 0.000 re.py:226(_compile)
1119307 1.253 0.000 1.724 0.000 StringIO.py:208(write)
1920528 1.092 0.000 1.092 0.000 {method 'search' of '_sre.SRE_Pattern' objects}
1920528 1.069 0.000 3.870 0.000 re.py:139(search)
210010 1.026 0.000 1.763 0.000 format.py:1537(just)
80022 0.884 0.000 5.224 0.000 config.py:455(_select_options)
60003 0.782 0.000 0.782 0.000 {method 'reduce' of 'numpy.ufunc' objects}
1940531 0.403 0.000 0.403 0.000 {method 'get' of 'dict' objects}
80022 0.402 0.000 0.402 0.000 {sorted}
530020 0.345 0.000 0.345 0.000 {_codecs.utf_8_decode}
Metadata
Metadata
Assignees
Labels
PerformanceMemory or execution speed performanceMemory or execution speed performance