Skip to content

BUG: to_sql with if_exists='replace' wrongly recreates dropped table #46661

@MichaelTiemannOSC

Description

@MichaelTiemannOSC

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

#!/usr/bin/env python
# coding: utf-8

# Note: this script requires connecting to a Trino instance using JWT access tokens.  Please adapt to your Trino environment to reproduce


from dotenv import dotenv_values, load_dotenv
import osc_ingest_trino as osc
import os
import pathlib


# Load Environment Variables

dotenv_dir = os.environ.get('CREDENTIAL_DOTENV_DIR', os.environ.get('PWD', '/opt/app-root/src'))
dotenv_path = pathlib.Path(dotenv_dir) / 'credentials.env'
if os.path.exists(dotenv_path):
    load_dotenv(dotenv_path=dotenv_path,override=True)

import trino
from sqlalchemy.engine import create_engine

env_var_prefix = 'TRINO'

sqlstring = 'trino://{user}@{host}:{port}/'.format(
    user = os.environ[f'{env_var_prefix}_USER'],
    host = os.environ[f'{env_var_prefix}_HOST'],
    port = os.environ[f'{env_var_prefix}_PORT']
)
sqlargs = {
    'auth': trino.auth.JWTAuthentication(os.environ[f'{env_var_prefix}_PASSWD']),
    'http_scheme': 'https',
    'catalog': 'osc_datacommons_dev'
}
engine = create_engine(sqlstring, connect_args = sqlargs)
connection = engine.connect()

ingest_catalog = 'osc_datacommons_dev'
ingest_schema = 'sandbox'

import pandas as pd

ticker_df = pd.DataFrame({'tname':['aapl','msft','goog','amzn','tsla','fb','ge','brk-a'],
                          'cik':[320193,789019,1652044,1018724,1318605,1326801,40545,1067983]}).convert_dtypes()

ingest_table = 'ticker_test'
columnschema = osc.create_table_schema_pairs(ticker_df)

qres = engine.execute(f"drop table if exists {ingest_catalog}.{ingest_schema}.{ingest_table}")
qres.fetchall()

tabledef = f"""
create table if not exists {ingest_catalog}.{ingest_schema}.{ingest_table}(
{columnschema}
) with (
partitioning = array['bucket(tname,20)'],
format = 'ORC'
)
"""
print(tabledef)
qres = engine.execute(tabledef)
print(qres.fetchall())
ticker_df.to_sql(ingest_table,
                 con=engine, schema=ingest_schema, if_exists='append',
                 index=False,
                 method=osc.TrinoBatchInsert(batch_size = 12000, verbose = True))

qres = engine.execute(f"show create table {ingest_schema}.{ingest_table}")
orc_table = qres.fetchall()
print(orc_table)

ticker_df.to_sql(ingest_table,
                 con=engine, schema=ingest_schema, if_exists='replace',
                 index=False,
                 method=osc.TrinoBatchInsert(batch_size = 12000, verbose = True))

qres = engine.execute(f"show create table {ingest_schema}.{ingest_table}")
replaced_table = qres.fetchall()

assert(orc_table==replaced_table)

Issue Description

to_sql trusts that SQLAlchemy's reflection scheme is sufficient to recreate a table from the reflection. In the above case, it is not. The column information is correct, but other parameters (in the WITH statement) are lost. Note that the SHOW CREATE TABLE command within Trino provides exactly the text needed to re-create the table. I have no idea how to explain to either Pandas nor SQLAlchemy how to use that text to properly recreate the table after dropping it due to the replace behavior.

Expected Behavior

Pandas and SQLAlchemy properly recreate a SQL table after dropping it when executing to_sql with replace behavior.

Installed Versions

INSTALLED VERSIONS

commit : 4bfe3d0
python : 3.8.8.final.0
python-bits : 64
OS : Linux
OS-release : 4.18.0-305.34.2.el8_4.x86_64
Version : #1 SMP Mon Jan 17 09:42:23 EST 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.4.2
numpy : 1.22.3
pytz : 2021.3
dateutil : 2.8.2
pip : 22.0.4
setuptools : 60.9.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.6.4
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.1.1
pandas_datareader: None
bs4 : 4.6.3
bottleneck : None
brotli : None
fastparquet : 0.8.1
fsspec : 2022.3.0
gcsfs : None
markupsafe : 2.1.0
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : 7.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : 1.4.27
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
zstandard : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugNeeds TriageIssue that has not been reviewed by a pandas team member

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions