-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
a=pd.DataFrame([[1.,0.],[np.nan, pd.NA],[1.,1.]])
a[1]=a[1].astype(pd.Float64Dtype())
a.replace(a.values[1,1], np.nan)
Issue Description
The a.replace
in the example above should raise an error instead of silently doing nothing, as the pd.NA
is not replaced by np.nan
.
This can lead to bugs in code with casting - for example:
a=pd.DataFrame([[1.,0.],[np.nan, pd.NA],[1.,1.]])
a.replace(a.values[1,1], np.nan).values.astype(float)
gives a numpy array, while
a=pd.DataFrame([[1.,0.],[np.nan, pd.NA],[1.,1.]])
a[1]=a[1].astype(pd.Float64Dtype())
a.replace(a.values[1,1], np.nan).values.astype(float)
raises an error.
Expected Behavior
import pandas as pd
import numpy as np
a=pd.DataFrame([[1.,0.],[np.nan, pd.NA],[1.,1.]])
a[1]=a[1].astype(pd.Float64Dtype())
a.replace(a.values[1,1], np.nan)
should raise an appropriate error.
Installed Versions
INSTALLED VERSIONS
commit : ba1cccd
python : 3.11.5.final.0
python-bits : 64
OS : Darwin
OS-release : 22.5.0
Version : Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:22 PDT 2023; root:xnu-8796.121.3~7/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.1.0
numpy : 1.24.3
pytz : 2022.7
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.2.1
Cython : 3.0.0
pytest : None
hypothesis : None
sphinx : None
blosc : 1.11.1
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.15.0
pandas_datareader : None
bs4 : None
bottleneck : 1.3.5
dataframe-api-compat: None
fastparquet : None
fsspec : 2023.9.0
gcsfs : None
matplotlib : 3.7.2
numba : None
numexpr : 2.8.4
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None