Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 28 additions & 23 deletions pandas/tests/window/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,40 +212,23 @@ def _create_data(self):
super()._create_data()
self.data = _consistency_data

def _test_moments_consistency(
self,
min_periods,
count,
mean,
mock_mean,
corr,
var_unbiased=None,
std_unbiased=None,
cov_unbiased=None,
var_biased=None,
std_biased=None,
cov_biased=None,
var_debiasing_factors=None,
):
def _non_null_values(x):
values = x.values.ravel()
return set(values[notna(values)].tolist())

def _test_moments_consistency_mock_mean(self, mean, mock_mean):
for (x, is_constant, no_nans) in self.data:
count_x = count(x)
mean_x = mean(x)
# check that correlation of a series with itself is either 1 or NaN

if mock_mean:
# check that mean equals mock_mean
expected = mock_mean(x)
tm.assert_equal(mean_x, expected.astype("float64"))

def _test_moments_consistency_is_constant(self, min_periods, count, mean, corr):
for (x, is_constant, no_nans) in self.data:
count_x = count(x)
mean_x = mean(x)
# check that correlation of a series with itself is either 1 or NaN
corr_x_x = corr(x, x)

# assert _non_null_values(corr_x_x).issubset(set([1.]))
# restore once rolling_cov(x, x) is identically equal to var(x)

if is_constant:
exp = x.max() if isinstance(x, Series) else x.max().max()

Expand All @@ -258,13 +241,35 @@ def _non_null_values(x):
expected[:] = np.nan
tm.assert_equal(corr_x_x, expected)

def _test_moments_consistency_var_debiasing_factors(
self, var_biased=None, var_unbiased=None, var_debiasing_factors=None
):
for (x, is_constant, no_nans) in self.data:
if var_unbiased and var_biased and var_debiasing_factors:
# check variance debiasing factors
var_unbiased_x = var_unbiased(x)
var_biased_x = var_biased(x)
var_debiasing_factors_x = var_debiasing_factors(x)
tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x)

def _test_moments_consistency(
self,
min_periods,
count,
mean,
corr,
var_unbiased=None,
std_unbiased=None,
cov_unbiased=None,
var_biased=None,
std_biased=None,
cov_biased=None,
):

for (x, is_constant, no_nans) in self.data:
count_x = count(x)
mean_x = mean(x)

for (std, var, cov) in [
(std_biased, var_biased, cov_biased),
(std_unbiased, var_unbiased, cov_unbiased),
Expand Down
45 changes: 37 additions & 8 deletions pandas/tests/window/moments/test_moments_ewm.py
Original file line number Diff line number Diff line change
Expand Up @@ -379,16 +379,50 @@ def _ewma(s, com, min_periods, adjust, ignore_na):
return result

com = 3.0
self._test_moments_consistency_mock_mean(
mean=lambda x: x.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean(),
mock_mean=lambda x: _ewma(
x, com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
),
)

self._test_moments_consistency_is_constant(
min_periods=min_periods,
count=lambda x: x.expanding().count(),
mean=lambda x: x.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean(),
corr=lambda x, y: x.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).corr(y),
)

self._test_moments_consistency_var_debiasing_factors(
var_unbiased=lambda x: (
x.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=False)
),
var_biased=lambda x: (
x.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=True)
),
var_debiasing_factors=lambda x: (
_variance_debiasing_factors(
x, com=com, adjust=adjust, ignore_na=ignore_na
)
),
)
# test consistency between different ewm* moments
self._test_moments_consistency(
min_periods=min_periods,
count=lambda x: x.expanding().count(),
mean=lambda x: x.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean(),
mock_mean=lambda x: _ewma(
x, com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
),
corr=lambda x, y: x.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).corr(y),
Expand Down Expand Up @@ -420,9 +454,4 @@ def _ewma(s, com, min_periods, adjust, ignore_na):
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).cov(y, bias=True)
),
var_debiasing_factors=lambda x: (
_variance_debiasing_factors(
x, com=com, adjust=adjust, ignore_na=ignore_na
)
),
)
27 changes: 21 additions & 6 deletions pandas/tests/window/moments/test_moments_expanding.py
Original file line number Diff line number Diff line change
Expand Up @@ -328,12 +328,31 @@ def test_expanding_consistency(self, min_periods):
)

# test consistency between different expanding_* moments
self._test_moments_consistency_mock_mean(
mean=lambda x: x.expanding(min_periods=min_periods).mean(),
mock_mean=lambda x: x.expanding(min_periods=min_periods).sum()
/ x.expanding().count(),
)

self._test_moments_consistency_is_constant(
min_periods=min_periods,
count=lambda x: x.expanding().count(),
mean=lambda x: x.expanding(min_periods=min_periods).mean(),
corr=lambda x, y: x.expanding(min_periods=min_periods).corr(y),
)

self._test_moments_consistency_var_debiasing_factors(
var_unbiased=lambda x: x.expanding(min_periods=min_periods).var(),
var_biased=lambda x: x.expanding(min_periods=min_periods).var(ddof=0),
var_debiasing_factors=lambda x: (
x.expanding().count()
/ (x.expanding().count() - 1.0).replace(0.0, np.nan)
),
)
self._test_moments_consistency(
min_periods=min_periods,
count=lambda x: x.expanding().count(),
mean=lambda x: x.expanding(min_periods=min_periods).mean(),
mock_mean=lambda x: x.expanding(min_periods=min_periods).sum()
/ x.expanding().count(),
corr=lambda x, y: x.expanding(min_periods=min_periods).corr(y),
var_unbiased=lambda x: x.expanding(min_periods=min_periods).var(),
std_unbiased=lambda x: x.expanding(min_periods=min_periods).std(),
Expand All @@ -343,10 +362,6 @@ def test_expanding_consistency(self, min_periods):
cov_biased=lambda x, y: x.expanding(min_periods=min_periods).cov(
y, ddof=0
),
var_debiasing_factors=lambda x: (
x.expanding().count()
/ (x.expanding().count() - 1.0).replace(0.0, np.nan)
),
)

# test consistency between expanding_xyz() and either (a)
Expand Down
60 changes: 48 additions & 12 deletions pandas/tests/window/moments/test_moments_rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -945,9 +945,7 @@ def test_rolling_consistency(self, window, min_periods, center):
)

# test consistency between different rolling_* moments
self._test_moments_consistency(
min_periods=min_periods,
count=lambda x: (x.rolling(window=window, center=center).count()),
self._test_moments_consistency_mock_mean(
mean=lambda x: (
x.rolling(
window=window, min_periods=min_periods, center=center
Expand All @@ -962,6 +960,53 @@ def test_rolling_consistency(self, window, min_periods, center):
).count()
)
),
)

self._test_moments_consistency_is_constant(
min_periods=min_periods,
count=lambda x: (x.rolling(window=window, center=center).count()),
mean=lambda x: (
x.rolling(
window=window, min_periods=min_periods, center=center
).mean()
),
corr=lambda x, y: (
x.rolling(
window=window, min_periods=min_periods, center=center
).corr(y)
),
)

self._test_moments_consistency_var_debiasing_factors(
var_unbiased=lambda x: (
x.rolling(
window=window, min_periods=min_periods, center=center
).var()
),
var_biased=lambda x: (
x.rolling(
window=window, min_periods=min_periods, center=center
).var(ddof=0)
),
var_debiasing_factors=lambda x: (
x.rolling(window=window, center=center)
.count()
.divide(
(x.rolling(window=window, center=center).count() - 1.0).replace(
0.0, np.nan
)
)
),
)

self._test_moments_consistency(
min_periods=min_periods,
count=lambda x: (x.rolling(window=window, center=center).count()),
mean=lambda x: (
x.rolling(
window=window, min_periods=min_periods, center=center
).mean()
),
corr=lambda x, y: (
x.rolling(
window=window, min_periods=min_periods, center=center
Expand Down Expand Up @@ -997,15 +1042,6 @@ def test_rolling_consistency(self, window, min_periods, center):
window=window, min_periods=min_periods, center=center
).cov(y, ddof=0)
),
var_debiasing_factors=lambda x: (
x.rolling(window=window, center=center)
.count()
.divide(
(x.rolling(window=window, center=center).count() - 1.0).replace(
0.0, np.nan
)
)
),
)

# test consistency between rolling_xyz() and either (a)
Expand Down