Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ Here are just a few of the things that pandas does well:
- Intuitive [**merging**][merging] and [**joining**][joining] data
sets
- Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
data sets
data sets.
- [**Hierarchical**][mi] labeling of axes (possible to have multiple
labels per tick)
- Robust I/O tools for loading data from [**flat files**][flat-files]
Expand Down
135 changes: 135 additions & 0 deletions pandas/tests/groupby/aggregate/test_large_int_sum.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
import numpy as np
import pandas as pd
import pytest


def test_groupby_sum_single_group_large_int64_matches_df_sum():
df = pd.DataFrame({"gb": ["A", "A"], "val": pd.Series([14, 2**60], dtype="int64")})
got = df.groupby("gb")["val"].sum().iloc[0]
exp = df["val"].sum()
assert got == exp
assert df["val"].dtype == "int64"
assert df.groupby("gb")["val"].sum().dtype == "int64"


def test_groupby_sum_multi_groups_matches_series_sum_int64():
vals = pd.Series([2**60, 14, 2**60 + 3, 7], dtype="int64")
gb = pd.Series(["A", "A", "B", "B"])
df = pd.DataFrame({"gb": gb, "val": vals})

got = df.groupby("gb")["val"].sum()
exp = pd.Series(
{"A": vals.iloc[:2].sum(), "B": vals.iloc[2:].sum()},
dtype="int64",
)
exp.index.name = "gb"
exp.name = "val" # <- this aligns the Series name with got

pd.testing.assert_series_equal(got, exp)


@pytest.mark.parametrize(
"dtype, big, small",
[
("int64", 2**60, 123),
("uint64", np.uint64(2**60), np.uint64(123)),
],
)
def test_groupby_sum_preserves_dtype_no_float_cast(dtype, big, small):
df = pd.DataFrame(
{"gb": ["A", "A", "B"], "val": pd.Series([big, small, big], dtype=dtype)}
)
out = df.groupby("gb")["val"].sum()
assert out.dtype.name == dtype
assert out.loc["A"] == pd.Series([big, small], dtype=dtype).sum()
assert out.loc["B"] == big


def test_groupby_sum_nullable_uint64_min_count_behavior():
s = pd.Series([pd.NA, np.uint64(2**60)], dtype="UInt64")
df = pd.DataFrame({"gb": ["A", "A"], "val": s})

out_na = df.groupby("gb")["val"].sum(min_count=2)
assert out_na.dtype.name == "UInt64"
assert out_na.iloc[0] is pd.NA

out_ok = df.groupby("gb")["val"].sum(min_count=1)
assert out_ok.dtype.name == "UInt64"
assert out_ok.iloc[0] == np.uint64(2**60)


def test_groupby_sum_nullable_all_na_respects_min_count():
s = pd.Series([pd.NA, pd.NA], dtype="Int64")
df = pd.DataFrame({"gb": ["A", "A"], "val": s})
out = df.groupby("gb")["val"].sum(min_count=1)
assert out.dtype.name == "Int64"
assert out.iloc[0] is pd.NA


def test_groupby_sum_dataframe_multiple_integer_columns_preserve_dtypes():
# int64 + uint64 columns; ensure values and dtypes preserved
df = pd.DataFrame(
{
"gb": ["A", "A", "B"],
"i64": pd.Series([2**60, 5, 7], dtype="int64"),
"u64": pd.Series(
[np.uint64(10), np.uint64(2**54), np.uint64(3)],
dtype="uint64",
),
}
)

got = df.groupby("gb")[["i64", "u64"]].sum()

exp = pd.DataFrame(
{
"i64": pd.Series(
{
"A": pd.Series([2**60, 5], dtype="int64").sum(),
"B": pd.Series([7], dtype="int64").sum(),
},
dtype="int64",
),
"u64": pd.Series(
{
"A": pd.Series(
[np.uint64(10), np.uint64(2**54)], dtype="uint64"
).sum(),
"B": pd.Series([np.uint64(3)], dtype="uint64").sum(),
},
dtype="uint64",
),
}
)
exp.index.name = "gb" # align index name with groupby result

pd.testing.assert_frame_equal(got, exp)
assert got["i64"].dtype == "int64"
assert got["u64"].dtype == "uint64"


def test_groupby_sum_dataframe_nullable_integers_min_count_by_column():
# Nullable Int64 / UInt64 with missing values; verify per-column min_count behavior
df = pd.DataFrame(
{
"gb": ["A", "A", "A", "B"],
"I": pd.Series([pd.NA, 2**60, pd.NA, 5], dtype="Int64"),
"U": pd.Series([pd.NA, np.uint64(7), pd.NA, np.uint64(2)], dtype="UInt64"),
}
)

out_na = df.groupby("gb")[["I", "U"]].sum(min_count=2)
assert out_na.loc["A", "I"] is pd.NA
assert out_na.loc["A", "U"] is pd.NA
assert out_na.loc["B", "I"] is pd.NA
assert out_na.loc["B", "U"] is pd.NA
assert out_na["I"].dtype.name == "Int64"
assert out_na["U"].dtype.name == "UInt64"

out_ok = df.groupby("gb")[["I", "U"]].sum(min_count=1)
assert out_ok["I"].dtype.name == "Int64"
assert out_ok["U"].dtype.name == "UInt64"
assert out_ok.loc["A", "I"] == 2**60
assert out_ok.loc["A", "U"] == np.uint64(7)
assert out_ok.loc["B", "I"] == 5
assert out_ok.loc["B", "U"] == np.uint64(2)
Loading