Skip to content

Add reactive expressions / blocks #49

@kmader

Description

@kmader

One of the best features in shiny is the ability to make reactive expression tying together a number of different tasks so that multiple outputs could depend on the same intermediate step. This is particularly useful for example below when having a table and a plot depend on the same input which is being filtered/transformed using some of the reactive components. It also allows many of the longer expressions to be rewritten more modularly with fewer inputs

clean_data <- reactive({
       raw_df %>% subset(age>input$min_age) %>% subset(count<input$max_count)
})
output$result_table<-renderDataTable({clean_data()})
output$result_plot<-renderPlot({ggplot(clean_data(), aes(x = age, y = count))+geom_jitter()})

Clearly in dash this is a bit trickier, but presumably something like a new type of Dependency

@app.callback(
    dash.dependencies.ReactiveExpression('clean_data'),
    [dash.dependencies.Input('crossfilter-xaxis-column', 'value')])
def clean_data(xaxis_val):
    return raw_df.query('xaxis=={}'.format(xaxis_val))

@app.callback(
    dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'),
    [dash.dependencies.ReactiveExpression('clean_data')])
def show_plot(in_data):
   return dict(data = [], layout = go.Layout()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions