Skip to content
This repository was archived by the owner on Nov 29, 2023. It is now read-only.

psimmerl/phiML

Repository files navigation

phiML

Dataset

  • skim8 (should switch to GEMC and use skim8 as the test dataset)
Type Count Percent
Phi 18,168 0.005%
epkpkm 298,978 0.081%
Total 369,885,938

*required at least 1 epkpkm and FD

Preprocessing

  • Require 1 e p kp km

    • should probably do this because we want to look at exclusive phi?
  • Require forward detector

    • should probably also do this because the different calibration metrics will make the convergence take longer and probably be less accurate?
  • Do I need to downsample to account for the unequal priors

    • currently have P(phi)=2/3 * P(background)

Features

  • vx, vy, vz, px, py, pz, E,
  • Q^2, t, xb
  • permutation over all invariant masses?

If I want to replicate the previous cuts:

  • hadron vertex difference, missing energy and masses, coplanarity, etc

Architectures to test:

  • Deep Neural Network
  • Random Forest
  • AdaBoost
  • Gradient Boost -> XGBoost


Preliminary Results

  • Data: skim8
    • Used wagon to find phi
    • background:
      • required at least 1 epkpkm
        • if there are multiple epkpkm I take the last set (need to fix/decide how to fix)
      • required all in FD
  • Features:
    • px, py, pz, vz for each e, p, kp, km (16 feats total)
    • StandardScaler (mean shifted to 0 and variance normalized to 1)

Ensemble Methods:

  • 3-fold cross validation on
    • 18145 background
    • 12135 phi
  • Still need to try XGBoost
  • Need to hyperparameter tune
Model Acc Ave Acc Std Dev AUC Ave AUC Std Dev
AdaBoost 0.838 0.001 0.905 0.001
Gradient Boost 0.846 0.003 0.917 0.003
Random Forest 0.854 0.002 0.922 0.002

Deep Neural Net:

  • epochs = 100
  • batch size = 16
  • hidden activation: relu
  • final activation: sigmoid
  • Train
    • 12063 background
    • 8123 phi
  • Validation:
    • 6082 background
    • 4012 phi
Layers Batch Norm Dropout Train Loss Train Acc. Train AUC Val Loss Val Acc. Val AUC
(512, 512, 256, 128, 2) True 0.0 0.197 0.925 0.970 0.296 0.881 0.934
(512, 512, 256, 128, 2) True 0.2 0.233 0.909 0.960 0.269 0.894 0.942
(512, 512, 256, 128, 2) True 0.4 0.262 0.897 0.954 0.281 0.891 0.942
(512, 512, 256, 128, 2) False 0.0 0.306 0.953 0.974 0.990 0.860 0.910
(512, 512, 256, 128, 2) False 0.2 0.231 0.929 0.959 0.468 0.890 0.930
(512, 512, 256, 128, 2) False 0.4 0.387 0.897 0.949 0.414 0.870 0.925
(512, 512, 512, 512, 512) True 0.0 0.244 0.919 0.967 0.287 0.879 0.937
(512, 512, 512, 512, 512) True 0.2 0.222 0.913 0.964 0.269 0.892 0.942
(512, 512, 512, 512, 512) True 0.4 0.244 0.898 0.957 0.265 0.891 0.943
(512, 512, 512, 512, 512) False 0.0 0.530 0.957 0.974 1.887 0.870 0.911
(512, 512, 512, 512, 512) False 0.2 0.200 0.933 0.977 0.499 0.886 0.934
(512, 512, 512, 512, 512) False 0.4 0.277 0.898 0.958 1.635 0.887 0.943
(128, 128, 128) True 0.0 0.207 0.923 0.970 0.276 0.893 0.941
(128, 128, 128) True 0.2 0.322 0.879 0.949 0.347 0.865 0.933
(128, 128, 128) True 0.4 0.254 0.890 0.949 0.266 0.887 0.942
(128, 128, 128) False 0.0 0.300 0.952 0.975 1.034 0.853 0.904
(128, 128, 128) False 0.2 0.180 0.932 0.976 0.307 0.894 0.941
(128, 128, 128) False 0.4 0.212 0.916 0.963 0.266 0.904 0.949
(64, 64, 64, 64) True 0.0 0.247 0.910 0.960 0.271 0.889 0.938
(64, 64, 64, 64) True 0.2 0.274 0.886 0.947 0.287 0.880 0.939
(64, 64, 64, 64) True 0.4 0.268 0.883 0.946 0.276 0.880 0.941
(64, 64, 64, 64) False 0.0 0.346 0.948 0.971 0.999 0.865 0.911
(64, 64, 64, 64) False 0.2 0.213 0.916 0.964 0.269 0.902 0.949
(64, 64, 64, 64) False 0.4 0.230 0.909 0.958 0.282 0.901 0.948

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published