Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 19 additions & 7 deletions pydantic_ai_slim/pydantic_ai/_output.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Generic, Literal, cast, overload

from pydantic import TypeAdapter, ValidationError
from pydantic import Json, TypeAdapter, ValidationError
from pydantic_core import SchemaValidator, to_json
from typing_extensions import Self, TypedDict, TypeVar, assert_never

Expand Down Expand Up @@ -624,21 +624,33 @@ def __init__(
json_schema = self._function_schema.json_schema
json_schema['description'] = self._function_schema.description
else:
type_adapter: TypeAdapter[Any]
json_schema_type_adapter: TypeAdapter[Any]
validation_type_adapter: TypeAdapter[Any]
if _utils.is_model_like(output):
type_adapter = TypeAdapter(output)
json_schema_type_adapter = validation_type_adapter = TypeAdapter(output)
else:
self.outer_typed_dict_key = 'response'
output_type: type[OutputDataT] = cast(type[OutputDataT], output)

response_data_typed_dict = TypedDict( # noqa: UP013
'response_data_typed_dict',
{'response': cast(type[OutputDataT], output)}, # pyright: ignore[reportInvalidTypeForm]
{'response': output_type}, # pyright: ignore[reportInvalidTypeForm]
)
json_schema_type_adapter = TypeAdapter(response_data_typed_dict)

# More lenient validator: allow either the native type or a JSON string containing it
# i.e. `response: OutputDataT | Json[OutputDataT]`, as some models don't follow the schema correctly,
# e.g. `BedrockConverseModel('us.meta.llama3-2-11b-instruct-v1:0')`
response_validation_typed_dict = TypedDict( # noqa: UP013
'response_validation_typed_dict',
{'response': output_type | Json[output_type]}, # pyright: ignore[reportInvalidTypeForm]
)
type_adapter = TypeAdapter(response_data_typed_dict)
validation_type_adapter = TypeAdapter(response_validation_typed_dict)

# Really a PluggableSchemaValidator, but it's API-compatible
self.validator = cast(SchemaValidator, type_adapter.validator)
self.validator = cast(SchemaValidator, validation_type_adapter.validator)
json_schema = _utils.check_object_json_schema(
type_adapter.json_schema(schema_generator=GenerateToolJsonSchema)
json_schema_type_adapter.json_schema(schema_generator=GenerateToolJsonSchema)
)

if self.outer_typed_dict_key:
Expand Down
31 changes: 31 additions & 0 deletions tests/test_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,37 @@ def return_tuple(_: list[ModelMessage], info: AgentInfo) -> ModelResponse:
assert result.output == ('foo', 'bar')


class Person(BaseModel):
name: str


def test_result_list_of_models_with_stringified_response():
def return_list(_: list[ModelMessage], info: AgentInfo) -> ModelResponse:
assert info.output_tools is not None
# Simulate providers that return the nested payload as a JSON string under "response"
args_json = json.dumps(
{
'response': json.dumps(
[
{'name': 'John Doe'},
{'name': 'Jane Smith'},
]
)
}
)
return ModelResponse(parts=[ToolCallPart(info.output_tools[0].name, args_json)])

agent = Agent(FunctionModel(return_list), output_type=list[Person])

result = agent.run_sync('Hello')
assert result.output == snapshot(
[
Person(name='John Doe'),
Person(name='Jane Smith'),
]
)


class Foo(BaseModel):
a: int
b: str
Expand Down