-
Notifications
You must be signed in to change notification settings - Fork 369
Closed
Labels
No ActivitybugSomething isn't workingSomething isn't workingplatform: aarch64Bugs regarding the x86_64 builds of TRTorchBugs regarding the x86_64 builds of TRTorch
Description
Bug Description
I built TensorRT for the Jetson Orin NX. I followed the instructions here and am building on the Jetson on the pyt2.0
branch, which uses the TensorRT 1.4.0 RC.
To Reproduce
I use the test script from here. When I try to run it, I get the following output:
/usr/local/lib/python3.8/dist-packages/torch_tensorrt/fx/tracer/acc_tracer/acc_ops.py:840: UserWarning: Unable to import torchvision related libraries.: No module named 'torchvision'. Please install torchvision lib in order to lower stochastic_depth
warnings.warn(
WARNING: [Torch-TensorRT TorchScript Conversion Context] - Unable to determine GPU memory usage
WARNING: [Torch-TensorRT TorchScript Conversion Context] - Unable to determine GPU memory usage
WARNING: [Torch-TensorRT TorchScript Conversion Context] - CUDA initialization failure with error: 222. Please check your CUDA installation: http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
Segmentation fault (core dumped)
Expected behavior
The test model is converted successfully.
Environment
Build information about Torch-TensorRT can be found by turning on debug messages
- Torch-TensorRT Version (e.g. 1.0.0): 1.4.0 (pyt2.0 branch ec06d6f)
- PyTorch Version (e.g. 1.0): 2.0.0a0+8aa34602.nv23.03 (installed from NVidia as instructed here)
- CPU Architecture: aarch64
- OS (e.g., Linux): Linux-5.10.104-tegra-aarch64-with-glibc2.29
- How you installed PyTorch (
conda
,pip
,libtorch
, source): NVidia compiled version, torch works on CUDA. - Build command you used (if compiling from source):
bazel build //:libtorchtrt --platforms //toolchains:jetpack_5.0
python3 setup.py install --use-cxx11-abi --jetpack-version 5.0
- Are you using local sources or building from archives: Local sources
- Python version: 3.8.10 (default, Mar 13 2023, 10:26:41) [GCC 9.4.0] (64-bit runtime)
- CUDA version: Jetson Orin NX
- GPU models and configuration: Jetson Orin NX
- Any other relevant information: N/A
Additional context
Output of python3 -m torch.utils.collect_env
:
nvidia@tegra-ubuntu:~$ python3 -m torch.utils.collect_env
Collecting environment information...
PyTorch version: 2.0.0a0+8aa34602.nv23.03
Is debug build: False
CUDA used to build PyTorch: 11.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.5 LTS (aarch64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.31
Python version: 3.8.10 (default, Mar 13 2023, 10:26:41) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.10.104-tegra-aarch64-with-glibc2.29
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Probably one of the following:
/usr/lib/aarch64-linux-gnu/libcudnn.so.8.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_adv_infer.so.8.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_adv_train.so.8.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_cnn_infer.so.8.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_cnn_train.so.8.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_ops_infer.so.8.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_ops_train.so.8.6.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: False
CPU:
Architecture: aarch64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 2
Vendor ID: ARM
Model: 1
Model name: ARMv8 Processor rev 1 (v8l)
Stepping: r0p1
CPU max MHz: 1984.0000
CPU min MHz: 115.2000
BogoMIPS: 62.50
L1d cache: 512 KiB
L1i cache: 512 KiB
L2 cache: 2 MiB
L3 cache: 4 MiB
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; __user pointer sanitization
Vulnerability Spectre v2: Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp uscat ilrcpc flagm
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.19.4
[pip3] torch==2.0.0a0+8aa34602.nv23.3
[pip3] torch-tensorrt==1.3.0+3d6a1ba5
[conda] Could not collect
Metadata
Metadata
Assignees
Labels
No ActivitybugSomething isn't workingSomething isn't workingplatform: aarch64Bugs regarding the x86_64 builds of TRTorchBugs regarding the x86_64 builds of TRTorch