Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 19 additions & 3 deletions imagenet/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,9 @@
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str,
help='distributed backend')
parser.add_argument('--local_rank', default=-1, type=int,
help='If specified, the training will only run on the '
'single given GPU device of the local_rank')

best_prec1 = 0

Expand All @@ -63,12 +66,24 @@ def main():
global args, best_prec1
args = parser.parse_args()

if args.dist_url == "env://" and os.environ.get("WORLD_SIZE") is not None:
args.world_size = int(os.environ.get("WORLD_SIZE"))

args.distributed = args.world_size > 1

if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size)

if args.local_rank > -1 and args.local_rank < torch.cuda.device_count():
print("=> using single device: {} for training".format(args.local_rank))
dp_device_ids = [args.local_rank]
else:
dp_device_ids = None

if dp_device_ids:
torch.cuda.set_device(args.local_rank)

# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
Expand All @@ -79,13 +94,14 @@ def main():

if not args.distributed:
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.features = torch.nn.DataParallel(model.features,
device_ids=dp_device_ids)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
model = torch.nn.DataParallel(model, device_ids=dp_device_ids).cuda()
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=dp_device_ids)

# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
Expand Down